科微学术

微生物学通报

异养氨氧化细菌通过双重作用机制促进多花黑麦草的再生
作者:
基金项目:

国家自然科学基金(U1304326);河南省科学委员会优秀青年基金(174100510004);河南省自然科学基金(162300410070)


Heterotrophic ammonia-oxidizing bacteria promote regeneration of Italian ryegrass via a dual-action mechanism
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】异养氨氧化细菌(heterotrophic ammonia-oxidizing bacteria, HAOB)通过增加叶片细胞分裂素含量促进多花黑麦草的再生,但其促进植物再生的具体机制尚未探明。【目的】揭示HAOB调控细胞分裂素的合成促进多花黑麦草再生的机制。【方法】以一株HAOB菌株(S2_8_1)为试验菌株,盆栽多花黑麦草作为植物材料。试验处理设计包括:常规供水(TA);添加空白富集培养基(TB);添加硝化抑制剂3,4-二甲基吡唑磷酸盐(3,4-dimethylpyrazole phosphate, DMPP) (TN1);添加DMPP和20 mmol/L的NO3-N (TN2);添加DMPP和30 mmol/L的NO3-N (TN3);添加DMPP和40 mmol/L的NO3-N (TN4);接种菌株S2_8_1 (TI)。【结果】30−40 mmol/L NO3-N对提高叶片细胞分裂素含量和根向叶片传递效果最好,从而促进叶片再生。在根际土壤硝化作用诱导的细胞分裂素增加达到最大限度时,接种菌株S2_8_1进一步增加了根中细胞分裂素的合成,提高了叶片中细胞分裂素的浓度。所测试的HAOB菌株S2_8_1通过双重作用显著提高了叶片细胞分裂素的浓度,促进了多花黑麦草再生。【结论】本研究揭示了HAOB菌株在根际发挥双重作用促进植物生长的机制,为提高牧草产量和农业可持续发展提供直接应用价值。

    Abstract:

    [Background] Heterotrophic ammonia-oxidizing bacteria (HAOB) promote the regeneration of Italian ryegrass by increasing the content of leaf cytokinins, although the specific mechanism remains to be elucidated. [Objective] To elucidate how HAOB promote the regeneration of Italian ryegrass by regulating the synthesis of cytokinins via a dual-action mechanism (in the rhizosphere soil and outside the rhizosphere environment, respectively. [Methods] A strain (S2_8_1) of HAOB and potted Italian ryegrass were used in this study. The treatments were designed as follows: Regular watering (TA); Addition of blank medium for enrichment culture (TB); Addition of 3,4-dimethylpyrazole phosphate (DMPP) (TN1); Addition of DMPP and 20 mmol/L NO3-N (TN2); Addition of DMPP and 30 mmol/L NO3-N (TN3); Addition of DMPP and 40 mmol/L NO3-N (TN4); Inoculation with the strain S2_8_1 (TI). [Results] NO3-N of 30–40 mmol/L was most effective in increasing the content of leaf cytokinins and enhancing the transfer of these hormones from the roots to the leaves, thereby promoting leaf regeneration. When the nitration-induced increase in cytokinins in the rhizosphere soil reached the maximum, inoculation with strain S2_8_1 further boosted the synthesis of these hormones in the roots, leading to an increased concentration of cytokinins in the leaves. The HAOB strain S2_8_1 significantly elevated the level of cytokinins in leaves via a dual-action mechanism, thereby promoting the regeneration of Italian ryegrass. [Conclusion] This study unveils the dual-action mechanism by which HAOB strains in the rhizosphere enhance plant growth, offering a direct application value for improving forage yields and sustainable agriculture development.

    参考文献
    [1] 吴建峰, 林先贵. 土壤微生物在促进植物生长方面的作用[J]. 土壤, 2003, 35(1): 18-21. WU JF, LIN XG. Effects of soil microbes on plant growth[J]. Soils, 2003, 35(1): 18-21 (in Chinese).
    [2] NASEBY DC, PASCUAL JA, LYNCH JM. Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities[J]. Journal of Applied Microbiology, 2000, 88(1): 161-169.
    [3] 张典利, 孟臻, 亓文哲, 乔康. 植物根际促生菌的研究与应用现状[J]. 世界农药, 2018, 40(6): 37-43, 50. ZHANG DL, MENG Z, QI WZ, QIAO K. The research and application status of plant growth promoting rhizobacteria[J]. World Pesticides, 2018, 40(6): 37-43, 50 (in Chinese).
    [4] 马莹, 曹梦圆, 石孝均, 李振轮, 骆永明. 植物促生菌的功能及在可持续农业中的应用[J]. 土壤学报, 2023, 60(6): 1555-1568. MA Y, CAO MY, SHI XJ, LI ZL, LUO YM. Functions of plant growth-promoting bacteria and their application in sustainable agriculture[J]. Acta Pedologica Sinica, 2023, 60(6): 1555-1568 (in Chinese).
    [5] Hashem A, Tabassum B, Abd_Allah EF. Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress[J]. Saudi Journal of Biological Sciences, 2019, 26(6): 1291-1297.
    [6] HA-TRAN DM, NGUYEN TTM, HUNG SH, HUANG E, HUANG CC. Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: a review[J]. International Journal of Molecular Sciences, 2021, 22(6): 3154.
    [7] SATI D, PANDE V, PANDEY SC, SAMANT M. Recent advances in PGPR and molecular mechanisms involved in drought stress tolerance[J]. Journal of Soil Science and Plant Nutrition, 2023, 23: 106-124.
    [8] RINCÓN-MOLINA CI, RUÍZ-VALDIVIEZO VM, RINCÓN-ROSALES R, DAVID FLORES FÉLIX J. Editorial: plant growth-promoting bacteria as a key tool for future agriculture: agronomic, molecular and omics approaches[J]. Frontiers in Microbiology, 2023, 14: 1168891.
    [9] 沈仁芳, 赵学强. 土壤微生物在植物获得养分中的作用[J]. 生态学报, 2015, 35(20): 6584-6591. SHEN RF, ZHAO XQ. Role of soil microbes in the acquisition of nutrients by plants[J]. Acta Ecologica Sinica, 2015, 35(20): 6584-6591 (in Chinese).
    [10] 贺纪正, 陆雅海, 傅伯杰. 土壤生物学前沿[M]. 北京: 科学出版社, 2015. HE JZ, LU YH, FU BJ. Frontier of soil biology[M]. Beijing: Science Press, 2015 (in Chinese).
    [11] LAMBERS H, MOUGEL C, JAILLARD B, HINSINGER P. Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective[J]. Plant and Soil, 2009, 321(1): 83-115.
    [12] ZHANG RF, VIVANCO JM, SHEN QR. The unseen rhizosphere root-soil-microbe interactions for crop production[J]. Current Opinion in Microbiology, 2017, 37: 8-14.
    [13] 付晓峰, 张桂萍, 张小伟, 任嘉红. 溶磷细菌和丛枝菌根真菌接种对南方红豆杉生长及根际微生物和土壤酶活性的影响[J]. 西北植物学报, 2016, 36(2): 353-360. FU XF, ZHANG GP, ZHANG XW, REN JH. The Effects of phosphate-solubilizing bacteria and arbuscular mycorrhizal fungi inoculation on the growth of southern yew, rhizospheric microorganisms, and soil enzyme activities[J]. Acta Botanica Boreali- Occidentalia Sinica, 2016, 36(2): 353-360 (in Chinese).
    [14] ZHANG JH, HUANG J, HUSSAIN S, ZHU LF, CAO XC, ZHU CQ, JIN QY, ZHANG H. Increased ammonification, nitrogenase, soil respiration and microbial biomass N in the rhizosphere of rice plants inoculated with rhizobacteria[J]. Journal of Integrative Agriculture, 2021, 20(10): 2781-2796.
    [15] 王世强. 链霉菌JD211对水稻的防病促生效应及机制[D]. 南昌: 江西农业大学硕士学位论文, 2014. WANG SQ. Antifungal and growth-promoting effects of streptomyces JD211 on rice: mechanisms and implications[D]. Nanchang: Master’s Thesis of Jiangxi Agricultural University, 2014 (in Chinese).
    [16] COCHARD B, GIROUD B, CROVADORE J, CHABLAIS R, ARMINJON L, LEFORT F. Endophytic PGPR from tomato roots: isolation, in vitro characterization and in vivo evaluation of treated tomatoes (Solanum lycopersicum L.)[J]. Microorganisms, 2022, 10(4): 765.
    [17] 薛磊. 棉花黄萎病生防链霉菌的抗病促生作用及其机制研究[D]. 杨凌: 西北农林科技大学博士学位论文, 2013. XUE L. Research on the disease resistance and growth-promoting effects of biocontrol Streptomyces on cotton Fusarium wilt, along with its mechanisms[D]. Yangling: Doctoral Dissertation of Northwest A&F University, 2013 (in Chinese).
    [18] FANG Y, WANG F, JIA XB, CHEN JC. Distinct responses of ammonia-oxidizing bacteria and archaea to green manure combined with reduced chemical fertilizer in a paddy soil[J]. Journal of Soils and Sediments, 2019, 19(4): 1613-1623.
    [19] HINSINGER P, VETTERLEIN D, YOUNG IM. Rhizosphere: biophysics, biogeochemistry and ecological relevance[J]. Plant and Soil, 2009, 321(1): 117-152.
    [20] WANG XL, QIN RR, SUN RH, WANG JJ, HOU XG, QI L, SHI J, LI XL, ZHANG YF, DONG PH, ZHANG LX, QIN DH. No post-drought compensatory growth of corns with root cutting based on cytokinin induced by roots[J]. Agricultural Water Management, 2018, 205: 9-20.
    [21] WU D, MA K, WANG XL, QI L, LIU YH, SONG P, LIU W, ZHANG MM, ZHAO W, SONG CW. Increasing Italian ryegrass (Lolium multiflorum Lam.) regrowth via inoculation with an ammonia-oxidizing bacterial strain[J]. Grassland Science, 2023, 69(1): 51-64.
    [22] 韩学东, 杜春梅, 董锡文. 植物根际促生菌研究综述[J]. 乡村科技, 2023, 14(5): 87-90. HAN XD, DU CM, DONG XW. A Summary of plant growth promoting rhizobacteria studies[J]. Rural Science and Technology, 2023, 14(5): 87-90 (in Chinese).
    [23] PAVINATO PS, RESTELATTO R, SARTOR LR, PARIS W. Production and nutritive value of ryegrass (cv. Barjumbo) under nitrogen fertilization[J]. Revista Ciência Agronômica, 2014, 45(2): 230-237.
    [24] WANG XL, LIU D, LI ZQ. Effects of the coordination mechanism between roots and leaves induced by root-breaking and exogenous cytokinin spraying on the grazing tolerance of ryegrass[J]. Journal of Plant Research, 2012, 125(3): 407-416.
    [25] WU D, WANG XL, ZHU XX, WANG HH, LIU W, QI L, SONG P, ZHANG MM, ZHAO W. Effect of ammonia-oxidizing bacterial strains that coexist in rhizosphere soil on Italian ryegrass regrowth[J]. Microorganisms, 2022, 10(11): 2122.
    [26] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. LU RK. Methods of Soil Agrochemical Analysis[M]. Beijing: China Agriculture Scientech Press, 2000 (in Chinese).
    [27] QIN RR, WANG XL. Effects of crown height on the compensatory growth of Italian ryegrass based on combined effects of stored organic matter and cytokinin[J]. Grassland Science, 2020, 66(1): 29-39.
    [28] ZAICOVSKI CB, ZIMMERMAN T, NORA L, NORA FR, SILVA JA, ROMBALDI CV. Water stress increases cytokinin biosynthesis and delays postharvest yellowing of broccoli florets[J]. Postharvest Biology and Technology, 2008, 49(3): 436-439.
    [29] OLDROYD GED, LEYSER O. A plant’s diet, surviving in a variable nutrient environment[J]. Science, 2020, 368(6486): eaba0196.
    [30] KOWALCHUK GA, STEPHEN JR. Ammonia- oxidizing bacteria: a model for molecular microbial ecology[J]. Annual Review of Microbiology, 2001, 55: 485-529.
    [31] LANDREIN B, FORMOSA-JORDAN P, MALIVERT A, SCHUSTER C, MELNYK CW, YANG WB, TURNBULL C, MEYEROWITZ EM, LOCKE JCW, JÖNSSON H. Nitrate modulates stem cell dynamics in Arabidopsis shoot meristems through cytokinins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6): 1382-1387.
    [32] POITOUT A, CRABOS A, PETŘÍK I, NOVÁK O, KROUK G, LACOMBE B, RUFFEL S. Responses to systemic nitrogen signaling in Arabidopsis roots involve trans-zeatin in shoots[J]. The Plant Cell, 2018, 30(6): 1243-1257.
    [33] 秦子娴, 张宇亭, 周志峰, 石孝均, 郭涛. 长期施肥对中性紫色水稻土氮素矿化和硝化作用的影响[J]. 中国农业科学, 2013, 46(16): 3392-3400. QIN ZX, ZHANG YT, ZHOU ZF, SHI XJ, GUO T. Characteristics of mineralization and nitrification in neutral purple paddy soil from a long-term fertilization experiment[J]. Scientia Agricultura Sinica, 2013, 46(16): 3392-3400 (in Chinese).
    [34] 赵薇, 伊文博, 王顶, 吴开贤, 赵平, 龙光强, 汤利. 间作对马铃薯种植土壤硝化作用和硝态氮供应的影响[J]. 应用生态学报, 2020, 31(12): 4171-4179. ZHAO W, YI WB, WANG D, WU KX, ZHAO P, LONG GQ, TANG L. Effects of intercropping on soil nitrification and nitrogen supply in potato field[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4171-4179 (in Chinese).
    [35] 苏瑜, 王为东. 我国北方四类土壤中氨氧化古菌和氨氧化细菌的活性及对氨氧化的贡献[J]. 环境科学学报, 2017, 37(9): 3519-3527. SU Y, WANG WD. Activity of AOA and AOB and their contributions to ammonia oxidization in four soils in North China[J]. Acta Scientiae Circumstantiae, 2017, 37(9): 3519-3527 (in Chinese).
    [36] 杨曾平, 聂军, 廖育林, 周兴, 谢坚, 鲁艳红, 纪雄辉, 吴家梅, 谢运河. 不同施肥量对稻田一年生黑麦草产量及氮磷钾吸收的影响[J]. 中国农学通报, 2015, 31(30): 173-180. YANG ZP, NIE J, LIAO YL, ZHOU X, XIE J, LU YH, JI XH, WU JM, XIE YH. Effect of different fertilizations on biomass yield and N, P, K absorption of annual ryegrass in rice field[J]. Chinese Agricultural Science Bulletin, 2015, 31(30): 173-180 (in Chinese).
    [37] 何国兴, 宋建超, 温雅洁, 刘彩婷, 祁娟. 不同根瘤菌肥对紫花苜蓿生产力及土壤肥力的综合影响[J]. 草业学报, 2020, 29(5): 109-120. HE GX, SONG JC, WEN YJ, LIU CT, QI J. Effects of different rhizobium fertilizers on alfalfa productivity and soil fertility[J]. Acta Prataculturae Sinica, 2020, 29(5): 109-120 (in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

于浩,王晓凌,段义忠,司振强,熊翔英,吴迪,李亚楠. 异养氨氧化细菌通过双重作用机制促进多花黑麦草的再生[J]. 微生物学通报, 2024, 51(8): 2962-2973

复制
分享
文章指标
  • 点击次数:124
  • 下载次数: 298
  • HTML阅读次数: 299
  • 引用次数: 0
历史
  • 收稿日期:2023-10-29
  • 最后修改日期:2023-11-25
  • 在线发布日期: 2024-08-20
  • 出版日期: 2024-08-20
文章二维码