科微学术

微生物学通报

南极莫氏黑粉菌热激蛋白70家族启动子鉴定及活性比较
作者:
基金项目:

湖南省植保植检站植物防疫防控科研项目(HNZB202104);中国农业科学院科技创新工程项目(ASTIP-IBFC)


Identification and activity comparison of promoters of the heat shock protein 70 family of Moesziomyces antarcticus
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】南极莫氏黑粉菌(Moesziomyces antarcticus)由于能够产生优良的生物表面活性剂和脂酶而被深入研究,但目前仍缺乏遗传操作相关的基因表达元件。【目的】检测南极莫氏黑粉菌热激蛋白70超家族全部7个基因的启动子表达活性,明确该菌中不同热激蛋白70家族成员的启动子活性差异,并筛选出可用于调控南极莫氏黑粉菌基因表达的强启动子。【方法】通过基因组数据库获得南极莫氏黑粉菌JCM10317菌株中7个热激蛋白70家族成员的基因信息,利用生物信息学方法进行热激蛋白70家族进化分析并预测热激蛋白70启动子(PHsp70)序列中的关键顺式作用元件,然后构建7个热激蛋白70启动子连接增强型绿色荧光蛋白基因的重组表达载体,通过测定阳性转化子荧光值和荧光显微观察比较不同热激蛋白70家族成员启动子的活性差异。【结果】蛋白进化分析表明7个热激蛋白70家族成员分别属于不同亚家族,并且各成员启动子中的顺式作用元件种类和数量也具有明显差异。此外,以PHsp701、PHsp702、PHsp703、PHsp704、PHsp705、PHsp706和PHsp707构建的重组质粒转化菌株BDH3-1所获得的阳性转化子平均荧光值分别为对照的12.8、1.6、2.9、5.8、4.6、5.0和1.5倍,与荧光显微观察结果一致。【结论】根据生物信息学分析及绿色荧光蛋白表达结果发现,南极莫氏黑粉菌热激蛋白70家族不同成员间的启动子活性差异显著,其中PHsp701的活性最高,是南极莫氏黑粉菌中的强启动子,PHsp704、PHsp705、PHsp706启动子活性次之,可作为备选启动子用于后续研究。

    Abstract:

    [Background] Moesziomyces antarcticus has been extensively studied for its ability to produce excellent biosurfactants and lipases, while little is known about its expression elements for genetic manipulation. [Objective] To measure and compare the promoter activities of all the seven genes of the heat shock protein 70 superfamily in M.antarcticus, and screen out the strong promoters that can be used for regulating gene expression in M.antarcticus. [Methods] The gene information on seven members of the heat shock protein 70 family was obtained from the genome database of M.antarcticus JCM10317. Bioinformatics tools were used for evolutionary analysis of the heat shock protein 70 family, and key cis-acting elements in the heat shock protein 70 promoter (PHsp70) sequences were predicted. The recombinant expression vectors were constructed by fusing the promoters of the seven heat shock protein 70 genes with the gene encoding the enhanced green fluorescent protein. The positive transformants were measured for the fluorescence intensity and observed under a fluorescence microscope, on the basis of which the promoter activities of different members of the heat shock protein 70 family were compared. [Results] The seven heat shock protein 70 family members belonged to different subfamilies, and their promoters had different categories and number of cis-acting elements. Moreover, the average fluorescence intensities of transformants with PHsp701, PHsp702, PHsp703, PHsp704, PHsp705, PHsp706, and PHsp707 recombinant plasmids respectively were 12.8, 1.6, 2.9, 5.8, 4.6, 5.0, and 1.5 times of that in the control. The results are consistent with the fluorescence observation results under the microscope. [Conclusion] The results of bioinformatics analysis and enhanced green fluorescent protein expression revealed significant differences in the promoter activity among the heat shock protein 70 family members in M.antarcticus. PHsp701 showed the highest expression activity, serving as a strong promoter in M.antarcticus. PHsp704, PHsp705, and PHsp706 had lower activities than PHsp701 but could be used as alternative promoters for further research.

    参考文献
    [1] WANG QM, BEGEROW D, GROENEWALD M, LIU XZ, THEELEN B, BAI FY, BOEKHOUT T. Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina[J]. Studies in Mycology, 2015, 81: 55-83.
    [2] GOTO S, SUGIYAMA J, IIZUKA H. A taxonomic study of Antarctic yeasts[J]. Mycologia, 1969, 61(4): 748-774.
    [3] KRUSE J, DOEHLEMANN G, KEMEN E, THINES M. Asexual and sexual morphs of Moesziomyces revisited[J]. IMA Fungus, 2017, 8(1): 117-129.
    [4] LI YM, SHIVAS RG, LI BJ, CAI L. Diversity of Moesziomyces (Ustilaginales, Ustilaginomycotina) on Echinochloa and Leersia (Poaceae)[J]. MycoKeys, 2019, 52: 1-16.
    [5] KHUNNAMWONG P, JINDAMORAKOT S, LIMTONG S. Endophytic yeast diversity in leaf tissue of rice, corn and sugarcane cultivated in Thailand assessed by a culture-dependent approach[J]. Fungal Biology, 2018, 122(8): 785-799.
    [6] SAIKA A, KOIKE H, YARIMIZU T, WATANABE T, KITAMOTO H, MORITA T. Deficiency of biodegradable plastic-degrading enzyme production in a gene-deletion mutant of phyllosphere yeast, Pseudozyma antarctica defective in mannosylerythritol lipid biosynthesis[J]. AMB Express, 2019, 9(1): 100.
    [7] YAMAMOTO S, MORITA T, FUKUOKA T, IMURA T, YANAGIDANI S, SOGABE A, KITAMOTO D, KITAGAWA M. The moisturizing effects of glycolipid biosurfactants, mannosylerythritol lipids, on human skin[J]. Journal of Oleo Science, 2012, 61(7): 407-412.
    [8] TANAKA E, KOITABASHI M, KITAMOTO H. A teleomorph of the ustilaginalean yeast Moesziomyces antarcticus on barnyardgrass in Japan provides bioresources that degrade biodegradable plastics[J]. Antonie van Leeuwenhoek, 2019, 112(4): 599-614.
    [9] WATANABE T, SHINOZAKI Y, YOSHIDA S, KOITABASHI M, SAMESHIMA-YAMASHITA Y, FUJII T, FUKUOKA T, KITAMOTO HK. Xylose induces the phyllosphere yeast Pseudozyma antarctica to produce a cutinase-like enzyme which efficiently degrades biodegradable plastics[J]. Journal of Bioscience and Bioengineering, 2014, 117(3): 325-329.
    [10] SHINOZAKI Y, MORITA T, CAO XH, YOSHIDA S, KOITABASHI M, WATANABE T, SUZUKI K, SAMESHIMA-YAMASHITA Y, NAKAJIMA-KAMBE T, FUJII T, KITAMOTO HK. Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization[J]. Applied Microbiology and Biotechnology, 2013, 97(7): 2951-2959.
    [11] DOMÍNGUEZ de MARÍA P, CARBONI-OERLEMANS C, TUIN B, BARGEMAN G, van der MEER A, van GEMERT R. Biotechnological applications of Candida antarctica lipase A: state-of-the-art[J]. Journal of Molecular Catalysis B: Enzymatic, 2005, 37(1/2/3/4/5/6): 36-46.
    [12] ALMALKI AFY, ARABDIN M, KHAN A. The role of heat shock proteins in cellular homeostasis and cell survival[J]. Cureus, 2021, 13(9): e18316.
    [13] 关兵兵. 玉米黑粉菌热激蛋白启动子介导的白僵菌转化效率评价[D]. 哈尔滨: 哈尔滨师范大学硕士学位论文, 2014. GUAN BB. Evaluation of Beauveria bassiana transformation efficiency mediated by Ustilago maydis heat shock protein promoter[D]. Harbin: Master’s Thesis of Harbin Normal University, 2014 (in Chinese).
    [14] 王林玲, 林海静, 王钰, 李治, 周泽扬. 家蚕热休克蛋白70家族基因的染色体定位及表达特征[J]. 蚕业科学, 2012, 38(4): 617-623. WANG LL, LIN HJ, WANG Y, LI Z, ZHOU ZY. Chromosomal localization and expressional profile of heat shock protein 70 family genes in silkworm, Bombyx mori[J]. Science of Sericulture, 2012, 38(4): 617-623 (in Chinese).
    [15] 卞加慧, 胡映莉, 汤近天, 夏文强, 叶子弘, 张雅芬. 菰黑粉菌遗传转化体系启动子的筛选[J]. 中国计量大学学报, 2022, 33(1): 106-115. BIAN JH, HU YL, TANG JT, XIA WQ, YE ZH, ZHANG YF. Screening promoters for the genetic transformation of Ustilago esculenta[J]. Journal of China University of Metrology, 2022, 33(1): 106-115 (in Chinese).
    [16] ZHANG ZJ, BIAN JH, ZHANG YF, XIA WQ, LI SY, YE ZH. An endoglucanase secreted by Ustilago esculenta promotes fungal proliferation[J]. Journal of Fungi, 2022, 8(10): 1050.
    [17] PLÜCKER L, BÖSCH K, GEIßL L, HOFFMANN P, GÖHRE V. Genetic manipulation of the Brassicaceae smut fungus Thecaphora thlaspeos[J]. Journal of Fungi, 2021, 7(1): 38.
    [18] SON SH, AHN JW, UJI T, CHOI DW, PARK EJ, HWANG MS, LIU JR, CHOI D, MIKAMI K, JEONG WJ. Development of an expression system using the heat shock protein 70 promoter in the red macroalga, Porphyra tenera[J]. Journal of Applied Phycology, 2012, 24(1): 79-87.
    [19] BOORSTEIN WR, ZIEGELHOFFER T, CRAIG EA. Molecular evolution of the HSP70 multigene family[J]. Journal of Molecular Evolution, 1994, 38(1): 1-17.
    [20] 祁茂冬. 玉米HSP70家族成员的鉴定及抗旱基因的筛选和功能分析[D]. 保定: 河北农业大学硕士学位论文, 2018. QI MD. Identification of maize HSP70 family members and screening and functional analysis of drought resistance genes[D]. Baoding: Master’s Thesis of Hebei Agricultural University, 2018 (in Chinese).
    [21] 张淑红, 范永山. 玉米大斑病菌热激蛋白Hsp70的鉴定和结构分析[J]. 福建农业学报, 2022, 37(9): 1187-1193. ZHANG SH, FAN YS. Identification and characterization of Heat shock protein Hsp70 in Setosphaeria turcica[J]. Fujian Journal of Agricultural Sciences, 2022, 37(9): 1187-1193 (in Chinese).
    [22] BLATZER M, BLUM G, JUKIC E, POSCH W, GRUBER P, NAGL M, BINDER U, MAURER E, SARG B, LINDNER H, LASS-FLÖRL C, WILFLINGSEDER D. Blocking Hsp70 enhances the efficiency of amphotericin B treatment against resistant Aspergillus terreus strains[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(7): 3778-3788.
    [23] LIU YY, CHEN J, CHENG Y, LI Y, LI XW, ZHANG ZB, XU XM, LIN YF, XU JP, LI ZM. A simple and rapid technique of template preparation for PCR[J]. Frontiers in Microbiology, 2022, 13: 1024827.
    [24] YU JJ, ZHANG YF, CUI HF, HU P, YU XP, YE ZH. An efficient genetic manipulation protocol for Ustilago esculenta[J]. FEMS Microbiology Letters, 2015, 362(12): fnv087.
    [25] ZHANG YM, ZHENG YM, XIAO N, WANG LN, ZHANG Y, FANG RX, CHEN XY. Functional analysis of the HS185 regulatory element in the rice HSP70 promoter[J]. Molecular Biology Reports, 2012, 39(2): 1649-1657.
    [26] 黎晨. 玉米黑粉菌cyp51基因上游启动子克隆及功能鉴定[D]. 武汉: 华中师范大学硕士学位论文, 2010. LI C. Cloning of upstream region of cyp51 gene from Ustilago maydis and analysis by bioinformatics[D]. Wuhan: Master’s Thesis of Central China Normal University, 2010 (in Chinese).
    [27] SPENA A, HAIN R, ZIERVOGEL U, SAEDLER H, SCHELL J. Construction of a heat-inducible gene for plants. Demonstration of heat-inducible activity of the Drosophila hsp70 promoter in plants[J]. The EMBO Journal, 1985, 4(11): 2739-2743.
    [28] HUANG W, HONG S, TANG GR, LU YZ, WANG CS. Unveiling the function and regulation control of the DUF3129 family proteins in fungal infection of hosts[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2019, 374(1767): 20180321.
    [29] SCHUSTER M, SCHWEIZER G, KAHMANN R. Comparative analyses of secreted proteins in plant pathogenic smut fungi and related basidiomycetes[J]. Fungal Genetics and Biology, 2018, 112: 21-30.
    [30] HUCK S, BOCK J, GIRARDELLO J, GAUERT M, PUL Ü. Marker-free genome editing in Ustilago trichophora with the CRISPR-Cas9 technology[J]. RNA Biology, 2019, 16(4): 397-403.
    [31] ÖKMEN B, SCHWAMMBACH D, BAKKEREN G, NEUMANN U, DOEHLEMANN G. The Ustilago hordei-barley interaction is a versatile system for characterization of fungal effectors[J]. Journal of Fungi, 2021, 7(2): 86.
    引证文献
引用本文

张聪,郭利桃,董国云,李毅,李新文,张政兵,林宇丰,侯春生,李智敏. 南极莫氏黑粉菌热激蛋白70家族启动子鉴定及活性比较[J]. 微生物学通报, 2024, 51(8): 2934-2946

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-18
  • 最后修改日期:2024-01-01
  • 在线发布日期: 2024-08-20
  • 出版日期: 2024-08-20
文章二维码