科微学术

微生物学通报

喷他霉素新生产菌的发现及产量提高
作者:
基金项目:

国家重点研发计划(2022YFC2303100);国家自然科学基金(32270081)


Discovery and production improvement of new pentamycin-producing bacteria
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】喷他霉素(pentamycin)是一种多烯大环内酯类抗生素,对白色念珠菌(Candida albicans)、阴道毛滴虫(Trichomonas vaginalis)和其他几种病原菌有显著的抑制活性,在瑞士已被注册用于治疗阴道念珠菌病、滴虫病和混合感染。【目的】发掘新的喷他霉素生物合成基因簇及其生产菌株,并通过基因工程改造方法提高其产量,为进一步提高喷他霉素产量、推动其工业化生产应用提供新思路及理论基础。【方法】通过BLASTp分析从细菌基因组中搜索喷他霉素已知生物合成酶的同源蛋白,进一步筛选出可能合成喷他霉素及其类似物filipin的新基因簇,使用多位点序列分析(multi-locus sequence analysis, MLSA)方法比较其所在宿主菌株的基因组相似性。利用组成型启动子kasOp*过表达LuxR家族转录调控基因ptnF以提高喷他霉素的产量。【结果】从细菌基因组中发掘获得了27个新的含有喷他霉素/filipin生物合成基因簇的菌株。并通过培养基筛选、发酵及代谢产物分析等证实了其中的米修链霉菌(Streptomyces misionensis)能够合成喷他霉素、filipin III等一系列化合物。进一步通过基因工程方法将喷他霉素的产量较野生菌株提高了4.34倍,达到101.7 mg/L,并且喷他霉素及filipin类似物总量达到146.1 mg/L,较野生菌株提高了3.28倍。【结论】本研究系统分析了细菌基因组中喷他霉素类天然产物生物合成基因簇及其所在菌株的多样性,通过实验证实其中的米修链霉菌能够合成喷他霉素及filipin类天然产物。此外,通过基因工程改造实现了喷他霉素产量的提高。本研究为构建更优的喷他霉素工业化生产菌株提供了新的元件、途径、菌株及理论基础。

    Abstract:

    [Background] Pentamycin is a polyene macrolide with significant inhibitory activities against Candida albicans, Trichomonas vaginalis, and several other vaginal pathogens and has been registered in Switzerland for treating vaginal candidiasis, trichomoniasis, and mixed infections. [Objective] To explore new biosynthetic gene clusters and production strains and improve the yield of pentamycin by genetic engineering, providing new ideas and a theoretical basis for further increasing the yield and promoting the industrial production and application of pentamycin. [Methods] BLASTp was used to search for the homologous proteins of known enzymes involved in the biosynthesis of pentamycin from bacterial genomes, and new gene clusters for synthesizing pentamycin and its analogues were identified. Then, multi-locus sequence analysis (MLSA) was performed to compare the genomic similarity among the strains possessing the biosynthetic gene clusters. The constitutive promoter kasOp* was used to overexpress the positive transcriptional regulatory gene ptnF for increasing pentamycin production. [Results] A total of 27 new strains containing the biosynthetic gene clusters of pentamycin/filipin were discovered from the bacterial genome. The results from medium screening, fermentation, and metabolite analysis indicated that Streptomyces misionensis can synthesize multiple compounds such as pentamycin and filipin III. The genetic engineering increased the yield of pentamycin by 4.34 folds (reaching 101.7 mg/L) compared with that of the original strain. The total production of pentamycin and filipin analogues by the engineered strain reached 146.1 mg/L, which was 3.28 times higher than that of the original strain. [Conclusion] This study systematically analyzed the biosynthetic gene clusters of pentamycin in bacterial genomes and the diversity of the strains carrying these gene clusters. The experimental data confirmed that S.misionensis can produce natural products including pentamycin and filipin. In addition, the production of pentamycin was improved by genetic engineering. This study provides new elements, pathways, strains, and theoretical foundations for constructing elite strains for the industrial production of pentamycin.

    参考文献
    [1] UMEZAWA S, TANAKA Y, OOKA M, SHIOTSU S. A new antifungal antibiotic, pentamycin[J]. The Journal of Antibiotics, 1958, 11(1): 26-29.
    [2] KRANZLER M, SYROWATKA M, LEITSCH D, WINNIPS C, WALOCHNIK J. Pentamycin shows high efficacy against Trichomonas vaginalis[J]. International Journal of Antimicrobial Agents, 2015, 45(4): 434-437.
    [3] FREY TIRRI B, BITZER J, GEUDELIN B, DREWE J. Safety, tolerability and pharmacokinetics of intravaginal pentamycin[J]. Chemotherapy, 2010, 56(3): 190-196.
    [4] WINNIPS C, BALMER JA. Intravaginal pentamycin for the treatment of bacterial vaginosis[J]. International Journal of Infectious Diseases, 2010, 14: e195.
    [5] VANIER MT, LATOUR P. Laboratory diagnosis of Niemann-Pick disease type C: the filipin staining test[J]. Methods in Cell Biology, 2015, 126: 357-375.
    [6] GIMPL G, GEHRIG-BURGER K. Probes for studying cholesterol binding and cell biology[J]. Steroids, 2011, 76(3): 216-231.
    [7] ROBISON RS, ASZALOS A, KRAEMER N, GIANNINI SM. Production of fungichromin by Streptoverticillium cinnamomeum subsp. cinnamomeum NRRL B-1285[J]. The Journal of Antibiotics, 1971, 24(4): 273.
    [8] PANDEY RC, KALITA CC, ASZALOS AA, GEOGHEGAN R Jr, GARRETSON AL, COOK JC Jr, RINEHART KL Jr. Field desorption mass spectrometry in structural studies of polyene macrolide antibiotics: isolation and early identification of a pentaene macrolide antibiotic[J]. Biomedical Mass Spectrometry, 1980, 7(3): 93-98.
    [9] SHIH HD, LIU YC, HSU FL, MULABAGAL V, DODDA R, HUANG JW. Fungichromin: a substance from Streptomyces padanus with inhibitory effects on Rhizoctonia solani[J]. Journal of Agricultural and Food Chemistry, 2003, 51(1): 95-99.
    [10] RAKOTONIRIANA EF, CHATAIGNÉ G, RAOELISON G, RABEMANANTSOA C, MUNAUT F, EL JAZIRI M, URVEG-RATSIMAMANGA S, MARCHAND- BRYNAERT J, CORBISIER AM, DECLERCK S, QUETIN-LECLERCQ J. Characterization of an endophytic whorl-forming Streptomyces from Catharanthus roseus stems producing polyene macrolide antibiotic[J]. Canadian Journal of Microbiology, 2012, 58(5): 617-627.
    [11] CAO ZS, YOSHIDA R, KINASHI H, ARAKAWA K. Blockage of the early step of lankacidin biosynthesis caused a large production of pentamycin, citreodiol and epi-citreodiol in Streptomyces rochei[J]. The Journal of Antibiotics, 2015, 68(5): 328-333.
    [12] van MINH N, WOO EE, LEE GS, KI DW, LEE IK, LEE SY, PARK K, SONG J, CHOI JE, YUN BS. Control efficacy of Streptomyces sp. A501 against ginseng damping-off and its antifungal substance[J]. Mycobiology, 2017, 45(1): 44-47.
    [13] WANG H, TIAN RZ, TIAN QZ, YAN X, HUANG LL, JI ZQ. Investigation on the antifungal ingredients of Saccharothrix yanglingensis Hhs.015, an antagonistic endophytic actinomycete isolated from cucumber plant[J]. Molecules, 2019, 24(20): 3686.
    [14] AMMANN A, GOTTLIEB D, BROCK TD, CARTER HE, WHITFIELD GB. Filipin, an antibiotic effective against fungi[J]. Phytopathology, 1955, 45(10): 559-563.
    [15] IKEDA H, SHIN-YA K, OMURA S. Genome mining of the Streptomyces avermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters[J]. Journal of Industrial Microbiology and Biotechnology, 2014, 41(2): 233-250.
    [16] KIM JD, HAN JW, HWANG IC, LEE D, KIM BS. Identification and biocontrol efficacy of Streptomyces miharaensis producing filipin III against Fusarium wilt[J]. Journal of Basic Microbiology, 2012, 52(2): 150-159.
    [17] ZHOU SS, SONG LJ, MASSCHELEIN J, SUMANG FAM, PAPA IA, ZULAYBAR TO, CUSTODIO AB, ZABALA D, ALCANTARA EP, de LOS SANTOS ELC, CHALLIS GL. Pentamycin biosynthesis in philippine Streptomyces sp. S816: cytochrome P450-catalyzed installation of the C-14 hydroxyl group[J]. ACS Chemical Biology, 2019, 14(6): 1305-1309.
    [18] PAYERO TD, VICENTE CM, RUMBERO Á, BARREALES EG, SANTOS-ABERTURAS J, de PEDRO A, APARICIO JF. Functional analysis of filipin tailoring genes from Streptomyces filipinensis reveals alternative routes in filipin III biosynthesis and yields bioactive derivatives[J]. Microbial Cell Factories, 2015, 14: 114.
    [19] WAN MY, GAN L, LI ZX, WANG MR, CHEN JT, CHEN SX, HU JF, LI JY. Enhancement of fungichromin production of Streptomyces sp. WP-1 by genetic engineering[J]. Applied Microbiology and Biotechnology, 2023, 107(17): 5415-5425.
    [20] TONG YJ, WHITFORD CM, ROBERTSEN HL, BLIN K, JØRGENSEN TS, KLITGAARD AK, GREN T, JIANG XL, WEBER T, LEE SY. Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(41): 20366-20375.
    [21] CHEN S, WU QH, SHEN QQ, WANG H. Progress in understanding the genetic information and biosynthetic pathways behind Amycolatopsis antibiotics, with implications for the continued discovery of novel drugs[J]. Chembiochem: a European Journal of Chemical Biology, 2016, 17(2): 119-128.
    [22] CAMACHO C, COULOURIS G, AVAGYAN V, MA N, PAPADOPOULOS J, BEALER K, MADDEN TL. BLAST+: architecture and applications[J]. BMC Bioinformatics, 2009, 10: 421.
    [23] TERLOUW BR, BLIN K, NAVARRO-MUÑOZ JC, AVALON NE, CHEVRETTE MG, EGBERT S, LEE S, MEIJER D, RECCHIA MJJ, REITZ ZL, van SANTEN JA, SELEM-MOJICA N, TØRRING T, ZAROUBI L, ALANJARY M, ALETI G, AGUILAR C, AL-SALIHI SAA, AUGUSTIJN HE, AVELAR-RIVAS JA, AVITIA-DOMÍNGUEZ LA, et al. MIBiG 3.0: a community-driven effort to annotate experimentally validated biosynthetic gene clusters[J]. Nucleic Acids Research, 2023, 51(D1): D603-D610.
    [24] DAILY J. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments[J]. BMC Bioinformatics, 2016, 17: 81.
    [25] LABEDA DP, DUNLAP CA, RONG XY, HUANG Y, DOROGHAZI JR, JU KS, METCALF WW. Phylogenetic relationships in the family Streptomycetaceae using multi-locus sequence analysis[J]. Antonie van Leeuwenhoek, 2017, 110(4): 563-583.
    [26] RONG XY, HUANG Y. Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA-DNA hybridization, validating the MLSA scheme for systematics of the whole genus[J]. Systematic and Applied Microbiology, 2012, 35(1): 7-18.
    [27] TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027.
    [28] LETUNIC I, BORK P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation[J]. Nucleic Acids Research, 2021, 49(W1): W293-W296.
    [29] KIESER T, BIBB MJ, BUTTNER MJ, CHATER KF, HOPWOOD DA. Practical Streptomyces Genetics[M]. Norwich: John Innes Foundation, 2000.
    [30] BALAKRISHNAN AR, EASWARAN KR. Conformation of polyene antibiotic, filipin III: CD and 1H NMR studies[J]. Journal of Biomolecular Structure & Dynamics, 1993, 11(2): 417-428.
    [31] WU JY, HUANG JW, SHIH HD, LIN WC, LIU YC. Optimization of cultivation conditions for fungichromin production from Streptomyces padanus PMS-702[J]. Journal of the Chinese Institute of Chemical Engineers, 2008, 39(1): 67-73.
    [32] ZANG CZ, CHANG YN, CHEN HB, WU JY, CHEN CI, HUANG JW, SHIH HD, LIU YC. Deciphering the roles of fatty acids and oils in fungichromin enhancement from Streptomyces padanus[J]. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(3): 413-418.
    [33] 谢秋萍, 卫腾云, 杨松柏, 吴远杰, 陈少欣. 喷他霉素的发酵培养基及工艺研究[J]. 中国医药工业杂志, 2021, 52(4): 507-512. XIE QP, WEI TY, YANG SB, WU YJ, CHEN SX. Fermentation medium and culture process for the production of pentamycin[J]. Chinese Journal of Pharmaceuticals, 2021, 52(4): 507-512 (in Chinese).
    [34] PENG C, AN DP, DING WX, ZHU YX, YE L, LI JY. Fungichromin production by Streptomyces sp. WP-1, an endophyte from Pinus dabeshanensis, and its antifungal activity against Fusarium oxysporum[J]. Applied Microbiology and Biotechnology, 2020, 104(24): 10437-10449.
    [35] WANG WS, LI X, WANG J, XIANG SH, FENG XZ, YANG KQ. An engineered strong promoter for streptomycetes[J]. Applied and Environmental Microbiology, 2013, 79(14): 4484-4492.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙佳宁,王海燕,范可强,何信,廖振翔,王立艳,黄英,任晋玮,孟大利,潘国辉. 喷他霉素新生产菌的发现及产量提高[J]. 微生物学通报, 2024, 51(8): 2888-2904

复制
分享
文章指标
  • 点击次数:152
  • 下载次数: 290
  • HTML阅读次数: 447
  • 引用次数: 0
历史
  • 收稿日期:2024-04-03
  • 最后修改日期:2024-04-23
  • 在线发布日期: 2024-08-20
  • 出版日期: 2024-08-20
文章二维码