科微学术

微生物学通报

慢性阻塞性肺疾病小鼠肠道免疫球蛋白A包被微生物组成及基因功能分析
作者:
基金项目:

宁夏回族自治区自然科学基金(2022AAC03470);宁夏回族自治区重点研发计划(2021BEG03090)


Composition and gene functions of intestinal IgA-coated microbiota in the mouse model of chronic obstructive pulmonary disease
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】小气道免疫球蛋白A (immunoglobulin A,IgA)在慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)的病理生理学中发挥着重要作用。然而肠黏膜来源的IgA在COPD病程中的作用及包被微生物群尚不明确。【目的】探讨COPD小鼠肠来源IgA包被肠道微生物组成、丰度及菌群基因功能变化。【方法】采用鼻腔滴入脂多糖和熏香烟法相结合建立COPD小鼠模型。收集COPD小鼠和野生型小鼠粪便样品各12份,IgA磁珠分选IgA包被的肠道微生物菌群,16S rRNA基因高通量测序分析其组成及功能。【结果】通过比较两组肺组织切片染色、平均内衬间隔(mean linear intercept,mLI)和肺泡灌洗液炎症因子浓度证实COPD模型鼠建模成功。OTU和主成分分析(principal component analysis,PCA)均发现两组间粪便样品中肠来源IgA包被微生物群落差异大,具有可比性。α多样性分析显示两组间物种多样性无显著统计学差异(P>0.05)。物种组成分析显示:两组肠来源IgA包被的菌群结构和菌群差异具有统计学意义(P<0.05)。COPD组的菌群结构中显著富集的菌目是:蛭弧菌目(Bdellovibrionales)、梭菌目(Clostridiales)和双歧杆菌目(Bifidobacteriales);科层面分类中富集的主要是:普雷沃氏菌科(Prevotellaceae)、梭菌科(Clostridiaceae)、类芽孢杆菌科(Paenibacillaceae)、蛭弧菌科(Bdellovibrionaceae)及双歧杆菌科(Bifidobacteriaceae);菌属层面分类上主要富集拟普雷沃氏菌属(Alloprevotella)、短芽孢杆菌属(Brevibacillus)、狭义梭菌属(Clostridium-sensu-stricto)、苏黎世杆菌属(Turicibacter)、粪杆菌属(Faecalibacterium)、吸血弧菌属(Vampirovibrio)和双歧杆菌属(Bifidobacterium)。菌群差异基因通过京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)数据库通路富集分析结果显示COPD组细胞生长与死亡、核苷酸代谢以及消化系统相关通路明显上调,而膜运输相关通路显著下调。【结论】COPD小鼠肠来源IgA包被肠道微生物存在紊乱及基因功能失调。

    Abstract:

    [Background] Immunoglobulin A (IgA) secreted by small airways plays a key role in the pathophysiology of chronic obstructive pulmonary disease (COPD). However, the role of IgA derived from intestinal mucosa in the pathogenesis of COPD and the IgA-coated microbiota remain unclear. [Objective] To investigate the composition, abundance, and differential gene functions of intestinal-derived IgA-coated gut microbiota in the mouse model of COPD. [Methods] A mouse model of COPD was established by intranasal instillation of lipopolysaccharide combined with cigarette smoking. Twelve fecal samples from COPD mice and 12 fecal samples from wild-type mice were collected. IgA magnetic beads were used to separate IgA-coated gut microbiota, followed by 16S rRNA gene high-throughput sequencing. [Results] We examined the modeling of COPD in mice by comparing the staining of lung tissue sections, mean linear intercept (mLI), and inflammatory cytokine concentrations in the alveolar lavage fluid between the two groups. Both OTU and PCA showed that the intestinal IgA-coated microbiota in fecal samples were different and comparable between the two groups. The alpha diversity analysis showed no statistically significant difference in the species diversity between the two groups (P>0.05). The structure of intestinal-derived IgA-coated microbiota had differences between the two groups (P<0.05). In the COPD group, the bacterial orders that were significantly enriched were Bdellovibrionales, Clostridiales, and Bifidobacteriales; the mainly enriched bacterial families were Prevotellaceae, Clostridiaceae, Paenibacillaceae, Bdellovibrionaceae, and Bifidobacteriaceae; and the mainly enriched bacterial genera were Alloprevotella, Brevibacillus, Clostridium-sensu-stricto, Turicibacter, Faecalibacterium, Vampirovibrio, and Bifidobacterium. The results of KEGG pathway enrichment analysis of differentially expressed genes showed that the cell growth and death, nucleotide metabolism, and digestive system-related pathways in the COPD group were significantly up-regulated, while the membrane transport pathway was significantly down-regulated. [Conclusion] The CODP mice present altered intestinal-derived IgA-coated gut microbiota and gene dysfunction.

    参考文献
    [1] POTO R, LOFFREDO S, PALESTRA F, MARONE G, PATELLA V, VARRICCHI G. Angiogenesis, lymphangiogenesis, and inflammation in chronic obstructive pulmonary disease (COPD): few certainties and many outstanding questions[J]. Cells, 2022, 11(10): 1720.
    [2] LANCET T. COPD: from an end-stage disease to lifelong lung health[J]. The Lancet, 2022, 400(10356): 863.
    [3] DAILAH HG. Therapeutic potential of small molecules targeting oxidative stress in the treatment of chronic obstructive pulmonary disease (COPD): a comprehensive review[J]. Molecules (Basel, Switzerland), 2022, 27(17): 5542.
    [4] FU YS, KANG N, YU YP, MI Y, GUO JL, WU JY, WENG CF. Polyphenols, flavonoids and inflammasomes: the role of cigarette smoke in COPD[J]. European Respiratory Review: an Official Journal of the European Respiratory Society, 2022, 31(164): 220028.
    [5] YU SY, ZHANG HP, WAN LP, XUE M, ZHANG YF, GAO XW. The association between the respiratory tract microbiome and clinical outcomes in patients with COPD[J]. Microbiological Research, 2023, 266: 127244.
    [6] 吴士昱, 王林峰. 气道微生态与慢性阻塞性肺疾病[J]. 生命的化学, 2022, 42(4): 684-690. WU SY, WANG LF. Role of airway microecology in chronic obstructive pulmonary disease[J]. Chemistry of Life, 2022, 42(4): 684-690(in Chinese).
    [7] LI NJ, DAI ZL, WANG Z, DENG ZS, ZHANG JH, PU JD, CAO WT, PAN TH, ZHOU YM, YANG ZW, LI J, LI B, RAN PX. Gut microbiota dysbiosis contributes to the development of chronic obstructive pulmonary disease[J]. Respiratory Research, 2021, 22(1): 1-15.
    [8] KIRSCHNER SK, DEUTZ NEP, JONKER R, OLDE DAMINK SWM, HARRYKISSOON RI, ZACHRIA AJ, DASARATHY S, ENGELEN MPKJ. Intestinal function is impaired in patients with chronic obstructive pulmonary disease[J]. Clinical Nutrition, 2021, 40(4): 2270-2277.
    [9] CHIU YC, LEE SW, LIU CW, LAN TY, WU LSH. Relationship between gut microbiota and lung function decline in patients with chronic obstructive pulmonary disease: a 1-year follow-up study[J]. Respiratory Research, 2022, 23(1): 10.
    [10] GUO JL, HAN X, HUANG WD, YOU YL, ZHAN JC. Interaction between IgA and gut microbiota and its role in controlling metabolic syndrome[J]. Obesity Reviews, 2021, 22(4): e13155.
    [11] TAKEUCHI T, OHNO H. IgA in human health and diseases: potential regulator of commensal microbiota[J]. Frontiers in Immunology, 2022, 13: 1024330.
    [12] HAN X, GUO JL, QIN Y, HUANG WD, YOU YL, ZHAN JC. Dietary regulation of the SIgA-gut microbiota interaction[J]. Critical Reviews in Food Science and Nutrition, 2023, 63(23): 6379-6392.
    [13] PABST O, IZCUE A. Secretory IgA: controlling the gut microbiota[J]. Nature Reviews Gastroenterology & Hepatology, 2022, 19(3): 149-150.
    [14] PERRUZZA L, STRATI F, RANERI M, LI H, GARGARI G, REZZONICO-JOST T, PALATELLA M, KWEE I, MORONE D, SEEHUSEN F, SONEGO P, DONATI C, FRANCESCHI P, MACPHERSON AJ, GUGLIELMETTI S, GREIFF V, GRASSI F. Apyrase-mediated amplification of secretory IgA promotes intestinal homeostasis[J]. Cell Reports, 2022, 40(3): 111112.
    [15] 江雁琼, 伍慧妍, 文艳琼. 慢阻肺急性加重期感染病原菌分布与机体免疫功能检测及其临床意义[J]. 中国病原生物学杂志, 2019, 14(2): 213-216. JIANG YQ, WU HY, WEN YQ. Detection and clinical significance of pathogen distribution and immune function in patients with AECOPD[J]. Journal of Pathogen Biology, 2019, 14(2): 213-216(in Chinese).
    [16] LADJEMI MZ, MARTIN C, LECOCQ M, DETRY B, ABOUBAKAR NANA F, MOULIN C, WEYNAND B, FREGIMILICKA C, BOUZIN C, THURION P, CARLIER F, SERRÉ J, GAYAN-RAMIREZ G, DELOS M, OCAK S, BURGEL PR, PILETTE C. Increased IgA expression in lung lymphoid follicles in severe chronic obstructive pulmonary disease[J]. American Journal of Respiratory and Critical Care Medicine, 2019, 199(5): 592-602.
    [17] LIU H, TANG HY, XU JY, PANG ZG. Small airway immunoglobulin A profile in emphysema-predominant chronic obstructive pulmonary disease[J]. Chinese Medical Journal, 2020, 133(16): 1915-1921.
    [18] CHOPYK DM, GRAKOUI A. Contribution of the intestinal microbiome and gut barrier to hepatic disorders[J]. Gastroenterology, 2020, 159(3): 849-863.
    [19] ZHOU H, SUN J, YU B, LIU ZH, CHEN H, HE J, MAO XB, ZHENG P, YU J, LUO JQ, LUO YH, YAN H, GE LP, CHEN DW. Gut microbiota absence and transplantation affect growth and intestinal functions: an investigation in a germ-free pig model[J]. Animal Nutrition, 2021, 7(2): 295-304.
    [20] TAN JY, TANG YC, HUANG J. Gut microbiota and lung injury[M]//Advances in Experimental Medicine and Biology. Singapore: Springer Singapore, 2020: 55-72.
    [21] 沈俊希, 朱星, 陈云志, 李文. 基于“肺-肠”轴探讨肺肠菌群相互作用机制及与慢性阻塞性肺疾病的关系[J]. 中华中医药学刊, 2023, 41(8): 181-186. SHEN JX, ZHU X, CHEN YZ, LI W. Exploring relationship between lung and gut microbiota and their interaction and chronic obstructive pulmonary disease on lung-gut axis[J]. Chinese Archives of Traditional Chinese Medicine, 2023, 41(8): 181-186(in Chinese).
    [22] NERURKAR NL, LEE C, MAHADEVAN L, TABIN CJ. Molecular control of macroscopic forces drives formation of the vertebrate hindgut[J]. Nature, 2019, 565(7740): 480-484.
    [23] WYPYCH TP, WICKRAMASINGHE LC, MARSLAND BJ. The influence of the microbiome on respiratory health[J]. Nature Immunology, 2019, 20(10): 1279-1290.
    [24] ANAND S, MANDE SS. Diet, microbiota and gut-lung connection[J]. Frontiers in Microbiology, 2018, 9: 2147.
    [25] FAN TQ, LU L, JIN R, SUI AH, GUAN RZ, CUI FJ, QU ZH, LIU DY. Change of intestinal microbiota in mice model of bronchopulmonary dysplasia[J]. PeerJ, 2022, 10: e13295.
    [26] LIU F, LI JJ, GUAN YB, LOU YF, CHEN HY, XU MY, DENG DQ, CHEN J, NI BB, ZHAO L, LI HW, SANG H, CAI XS. Dysbiosis of the Gut Microbiome is associ敡捴牥敤琠潷物祴??杔??獯桲愠灂敩獯?晡畲湫捥瑲楳漠湩慮氠?浵楮捧爠潃扡楮慣汥?晛楊瑝渮攠獉獮孴?嵲??乴慩瑯畮牡敬???ふ????????????????????????扣牥?嬬??崰??伬圠?刵??丱????″券????丹′匮???嘾?唲???乓????????之?剖?乔???唬???乎?????????剈奕??圠体伮????????????吠?奨?匠???卥?啴????匠???坲佯佢??????奝?丠??????坥?删??倠????啯??乯?佯?呹娬?倲????丠匲?到伨‵倩????椷猭收愸猴攮?慢獲猾潛挲椸慝琠敌摉?朠畊琬?浙楁捎片漠扚楗漬洠敌?慁湏搠?浌攬琠慐扁潎氠潔浈攬?捐桕愠湊杄攬猠?楁湏?灂慗琬椠敆湕琠獚?眬椠瑃桁?挠桗牔漬渠楚捈?潕戠獙瑍爬甠捈瑅椠癆攬?灌畉氠浂漬渠慒牁祎?摐楘献攠慃獨敲孯?嵩??乥慸瑰畯牳敵??漠浴浯甠湡業换慩瑥楮潴渠獰???ど?ふ??????????????duces gut microbial dysbiosis in a rat COPD model[J]. Respiratory Research, 2020, 21(1): 271.
    [29] WANG L, PELGRIM CE, PERALTA MARZAL LN, KORVER S, van ARK I, LEUSINK-MUIS T, van HELVOORT A, KESHAVARZIAN A, KRANEVELD AD, GARSSEN J, HENRICKS PAJ, FOLKERTS G, BRABER S. Changes in intestinal homeostasis and immunity in a cigarette smoke- and LPS-induced murine model for COPD: the lung-gut axis[J]. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2022, 323(3): L266-L280.
    [30] KOTLYAROV S. Role of short-chain fatty acids produced by gut microbiota in innate lung immunity and pathogenesis of the heterogeneous course of chronic obstructive pulmonary disease[J]. International Journal of Molecular Sciences, 2022, 23(9): 4768.
    [31] ASHIQUE S, de RUBIS G, SIROHI E, MISHRA N, RIHAN M, GARG A, REYES RJ, MANANDHAR B, BHATT S, JHA NK, SINGH TG, GUPTA G, SINGH SK, CHELLAPPAN DK, PAUDEL KR, HANSBRO PM, OLIVER BG, DUA K. Short chain fatty acids: fundamental mediators of the gut-lung axis and their involvement in pulmonary diseases[J]. Chemico-Biological Interactions, 2022, 368: 110231.
    [32] SORBARA MT, PAMER EG. Microbiome-based therapeutics[J]. Nature Reviews Microbiology, 2022, 20(6): 365-380.
    [33] RODRIGUES VF, ELIAS-OLIVEIRA J, PEREIRA ÍS, PEREIRA JA, BARBOSA SC, MACHADO MSG, CARLOS D. Akkermansia muciniphila and gut immune system: a good friendship that attenuates inflammatory bowel disease, obesity, and diabetes[J]. Frontiers in Immunology, 2022, 13: 934695.
    [34] ROLLENSKE T, BURKHALTER S, MUERNER L, von GUNTEN S, LUKASIEWICZ J, WARDEMANN H, MACPHERSON AJ. Parallelism of intestinal s
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

康宇婷,李秋洁,邱卓然,续超,贾伟,汪澎涛. 慢性阻塞性肺疾病小鼠肠道免疫球蛋白A包被微生物组成及基因功能分析[J]. 微生物学通报, 2024, 51(7): 2676-2689

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-28
  • 录用日期:2023-11-06
  • 在线发布日期: 2024-07-20
  • 出版日期: 2024-07-20
文章二维码