科微学术

微生物学通报

新生儿重症监护病房患儿粪便肺炎克雷伯菌分离株毒力特征分析
作者:
基金项目:

北京市自然科学基金(7204262)


Virulence characteristics of Klebsiella pneumoniae isolates from the feces of children in neonatal intensive care unit
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】肺炎克雷伯菌(Klebsiella pneumoniae)常存在于人体上呼吸道和肠道,属于条件性致病菌。目前由于临床上多重耐药菌株的出现及细菌毒力的不断增强使其受到了广泛关注。新生儿重症监护病房(neonatal intensive care unit,NICU)患儿免疫系统不完善,高毒力肺炎克雷伯菌的存在具有院内传播的潜在风险。【目的】探究2021年北京妇产医院/北京妇幼保健院NICU患儿粪便肺炎克雷伯菌存在情况与分离株毒力特征。【方法】对采集自北京妇产医院/北京妇幼保健院NICU患儿421份粪便样本进行肺炎克雷伯菌分离培养、全基因组测序及毒力基因分析。利用毒力因子数据库(virulence factor database,VFDB)和Kleborate数据库进行肺炎克雷伯菌毒力基因注释与多位点序列分型(multilocus sequence typing,MLST),并通过拉丝试验、大蜡螟生存试验及细胞毒力试验验证各菌株毒力。【结果】在421份粪便样品中共检出13株肺炎克雷伯菌,检出率为3.1%,肺炎克雷伯菌携带者主要集中于ABO溶血、低出生体重、新生儿肺炎和新生儿高胆红素血症患者。肺炎克雷伯菌分离株基因组大小为5 Mb,基因组组装后序列长度中位数N50大于20 kb,G+C含量为57%。13株菌分别具有13种ST型别、13种K血清型与7种O血清型。利用VFDB注释肺炎克雷伯菌分离株的846个毒力基因,菌株Kp50具有最多的毒力蛋白和毒力结构基因,Kleborate毒力因子评分中菌株Kp50评分最高。表型试验发现在13株肺炎克雷伯菌中,仅有菌株Kp50具有高黏表型和更强的细胞毒力,具有铁载体表达能力的菌株Kp50、Kp260、Kp185和Kp273在大蜡螟幼虫试验中呈现较高的毒力。【结论】北京妇产医院/北京妇幼保健院NICU患儿粪便样本中肺炎克雷伯菌检出率较低,分离得到的肺炎克雷伯菌分型呈现高度多样性,存在携带多种毒力基因和表型的高毒力菌株,需引起临床重视,做好高毒力菌株在院内传播的预防与控制。

    Abstract:

    [Background] Klebsiella pneumoniae, a conditional pathogen, often colonizes the upper respiratory tract and intestinal tract of the human body. Due to the emergence of clinically multi-drug resistant strains and the continuous enhancement of strain virulence, this pathogen has received extensive attention. Children in the neonatal intensive care unit (NICU) have an imperfect immune system and are exposed to the risk of nosocomial transmission of highly virulent strains of K. pneumoniae. [Objective] To investigate the presence and virulence characteristics of K. pneumoniae isolates from feces of children in the NICU of Beijing Obstetrics and Gynecology Hospital/Beijing Maternal and Child Health Care Hospital in 2021. [Methods] The strain isolation, whole genome sequencing, and virulence gene analysis of K. pneumoniae were carried out on 421 fecal samples collected from children in the NICU of Beijing Obstetrics and Gynecology Hospital/Beijing Maternal and Child Health Care Hospital. The virulence factor database (VFDB) and Kleborate were used for annotation of the virulence genes and the multilocus sequence typing (MLST) of K. pneumoniae, and the virulence of each strain was examined by the string test, the Galleria mellonella survival test, and the cytotoxicity test. [Results] A total of 13 strains of K. pneumoniae were detected in the 421 fecal samples, with a detection rate of 3.1%. K. pneumoniae was mainly carried by the patients with ABO hemolytic, low birth weight, neonatal pneumonia, and neonatal hyperbilirubinemia. The genome of K. pneumoniae isolates was 5 Mb, with median sequence length after genome assembly N50>20 kb and G+C content of 57%. The 13 strains presented 13 ST types, 13 K serotypes, and 7 O serotypes. Among the 846 virulence genes annotated by the VFDB, strain Kp50 had the largest number of virulence proteins and virulence genes, and this strain had the highest virulence score determined by Kleborate. Phenotypic tests revealed that among the 13 K. pneumoniae strains, only strain Kp50 had a high mucoid phenotype and stronger cytotoxicity. Strains Kp50, Kp260, Kp185, and Kp273, which had siderophore expression ability, presented stronger virulence in the larvae of Galleria mellonella. [Conclusion] K. pneumoniae isolates from the fecal samples of children in the NICU of Beijing Obstetrics and Gynecology Hospital/Beijing Maternal and Child Health Care Hospital showed a low detection rate and high diversity. There are highly virulent strains carrying multiple virulence genes and phenotypes. High attention should be paid to the prevention and control of the spread of highly virulent strains in hospitals.

    参考文献
    [1] 中华医学会儿科学分会新生儿学组, 中华儿科杂志编辑委员会. 宏基因组二代测序技术在新生儿感染性疾病中的临床应用专家共识[J]. 中华儿科杂志, 2022, 60(6): 516-521. The Subspecialty Group of Neonatology, the Society of Pediatrics, Chinese Medical Association; the Editorial Board, Chinese Journal of Pediatrics. Expert consensus on the application of metagenomics next-generation sequencing in neonatal infectious diseases[J]. Chinese Journal of Pediatrics, 2022, 60(6): 516-521(in Chinese).
    [2] MARINO A, PULVIRENTI S, CAMPANELLA E, STRACQUADANIO S, CECCARELLI M, MICALI C, TINA LG, Di DIO G, STEFANI S, CACOPARDO B, NUNNARI G. Ceftazidime-avibactam treatment for Klebsiella pneumoniae bacteremia in preterm infants in NICU: a clinical experience[J]. Antibiotics, 2023, 12(7): 1169.
    [3] WYRES KL, LAM MMC, HOLT KE. Population genomics of Klebsiella pneumoniae[J]. Nature Reviews Microbiology, 2020, 18: 344-359.
    [4] XU YP, ZHANG JF, WANG M, LIU M, LIU GT, QU HP, LIU JL, DENG ZX, SUN JY, OU HY, QU JM. Mobilization of the nonconjugative virulence plasmid from hypervirulent Klebsiella pneumoniae[J]. Genome Medicine, 2021, 13(1): 119.
    [5] RUSSO TA, MARR CM. Hypervirulent Klebsiella pneumoniae[J]. Clinical Microbiology Reviews, 2019, 32(3): e00001-e00019.
    [6] 王丽凤, 沈定霞. 高毒力肺炎克雷伯菌的致病机制研究进展[J]. 中华微生物学和免疫学杂志, 2016, 36(6): 468-471. WANG LF, SHEN DX. Progress in pathogenic mechanism of hypervirulent Klebsiella pneumoniae[J]. Chinese Journal of Microbiology and Immunology, 2016, 36(6): 468-471(in Chinese).
    [7] ZHANG QB, ZHU P, ZHANG S, RONG YJ, HUANG ZA, SUN LW, CAI T. Hypervirulent Klebsiella pneumoniae detection methods: a minireview[J]. Archives of Microbiology, 2023, 205(10): 326.
    [8] YUAN J, CHEN C, CUI JH, LU J, YAN C, WEI X, ZHAO XN, LI NN, LI SL, XUE GH, CHENG WW, LI BX, LI H, LIN WS, TIAN CY, ZHAO JT, HAN JQ, AN DZ, ZHANG Q, WEI H, et al. Fatty liver disease caused by high-alcohol-producing Klebsiella pneumoniae[J]. Cell Metabolism, 2019, 30(6): 1172.
    [9] 和晋渝, 邱景富, 刘梦颖, 闫小娟, 李迎丽, 郭兆彪, 周冬生. PCR鉴定肺炎克雷伯菌的强毒性血清型[J]. 生物技术通讯, 2012, 23(4): 554-557. HE JY, QIU JF, LIU MY, YAN XJ, LI YL, GUO ZB, ZHOU DS. Polymerase chain reaction analysis for detecting highly virulent serotypes of Klebsiella pneumoniae[J]. Letters in Biotechnology, 2012, 23(4): 554-557(in Chinese).
    [10] 陶宇杰, 舒志万, 郭敏, 高翔, 王嵘, 沈国平, 韩睿, 朱德锐. 西藏扎布耶盐碱湖细菌的多样性与分离菌株的生长特性[J]. 微生物学通报, 2023, 50(12): 5286-5299. TAO YJ, SHU ZW, GUO M, GAO X, WANG R, SHEN GP, HAN R, ZHU DR. Bacterial diversity and growth characteristics of isolates from Zabuye Lake, Xizang[J]. Microbiology China, 2023, 50(12): 5286-5299(in Chinese).
    [11] BANKEVICH A, NURK S, ANTIPOV D, GUREVICH AA, DVORKIN M, KULIKOV AS, LESIN VM, NIKOLENKO SI, PHAM S, PRJIBELSKI AD, PYSHKIN AV, SIROTKIN AV, VYAHHI N, TESLER G, ALEKSEYEV MA, PEVZNER PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing[J]. Journal of Computational Biology, 2012, 19(5): 455-477.
    [12] SIMPSON JT, WONG K, JACKMAN SD, SCHEIN JE, JONES SJM, BIROL I. ABySS: a parallel assembler for short read sequence data[J]. Genome Research, 2009, 19(6): 1117-1123.
    [13] LI RQ, ZHU HM, RUAN J, QIAN WB, FANG XD, SHI ZB, LI YR, LI ST, SHAN G, KRISTIANSEN K, LI SG, YANG HM, WANG J, WANG J. De novo assembly of human genomes with massively parallel short read sequencing[J]. Genome Research, 2010, 20(2): 265-272.
    [14] LIN SH, LIAO YC. CISA: contig integrator for sequence assembly of bacterial genomes[J]. PLoS One, 2013, 8(3): e60843.
    [15] TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027.
    [16] LAM MMC, WICK RR, WATTS SC, CERDEIRA LT, WYRES KL, HOLT KE. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex[J]. Nature Communications, 2021, 12: 4188.
    [17] WYRES KL, WICK RR, GORRIE C, JENNEY A, FOLLADOR R, THOMSON NR, HOLT KE. Identification of Klebsiella capsule synthesis loci from whole genome data[J]. Microbial Genomics, 2016, 2(12): e000102.
    [18] PU DN, ZHAO JK, CHANG K, ZHUO XX, CAO B. "Superbugs” with hypervirulence and carbapenem resistance in Klebsiella pneumoniae: the rise of such emerging nosocomial pathogens in China[J]. Science Bulletin, 2023, 68(21): 2658-2670.
    [19] ZHOU Y, WU CY, WANG BJ, XU YL, ZHAO HL, GUO YJ, WU XC, YU JY, RAO LL, WANG XY, YU FY. Characterization difference of typical KL1, KL2 and ST11-KL64 hypervirulent and carbapenem-resistant Klebsiella pneumoniae[J]. Drug Resistance Updates, 2023, 67: 100918.
    [20] PATRO LPP, SUDHAKAR KU, RATHINAVELAN T. K-PAM: a unified platform to distinguish Klebsiella species K- and O-antigen types, model antigen structures and identify hypervirulent strains[J]. Scientific Reports, 2020, 10: 16732.
    [21] 徐水宝, 杨思宇, 翁珊珊, 陈晨, 陈澍, 张文宏, 金嘉琳. 高毒力肺炎克雷伯菌血清型、毒力基因分布及分子标志物探索[J]. 微生物与感染, 2019, 14(6): 338-344. XU SB, YANG SY, WENG SS, CHEN C, CHEN S, ZHANG WH, JIN JL. Distribution of serotypes and virulence genes in hypervirulent Klebsiella pneumoniae and exploration of molecular markers[J]. Journal of Microbes and Infections, 2019, 14(6): 338-344(in Chinese).
    [22] HASSUNA NA, ABDELAZIZ RA, ZAKARIA A, ABDELHAKEEM M. Extensively-drug resistant Klebsiella pneumoniae recovered from neonatal sepsis cases from a major NICU in Egypt[J]. Frontiers in Microbiology, 2020, 11: 1375.
    [23] 郭梦雨, 刘莹, 费冰, 任彦颖, 刘心伟, 赵芝静, 李永伟. 高毒力肺炎克雷伯菌毒力因子研究进展[J]. 中华预防医学杂志, 2021, 55(11): 1357-1363. GUO MY, LIU Y, FEI B, REN YY, LIU XW, ZHAO ZJ, LI YW. Research progress on virulence factors of hypervirulent Klebsiella pneumoniae[J]. Chinese Journal of Preventive Medicine, 2021, 55(11): 1357-1363(in Chinese).
    [24] ZHANG ZW, WEN HN, WANG H, ZHANG P, LI J, LIANG YY, LIU YC, SUN LH, XIE SJ. A case of meningitis in an infant due to hypervirulent Klebsiella pneumoniae transmission within a family[J]. Infection and Drug Resistance, 2022, 15: 4927-4933.
    [25] CHEN YH, BROOK TC, SOE CZ, O’NEILL I, ALCON-GINER C, LEELASTWATTANAGUL O, PHILLIPS S, CAIM S, CLARKE P, HALL LJ, HOYLES L. Preterm infants harbour diverse Klebsiella populations, including atypical species that encode and produce an array of antimicrobial resistance- and virulence-associated factors[J]. Microbial Genomics, 2020, 6(6): e000377.
    [26] LUO K, TANG J, QU Y, YANG X, ZHANG L, CHEN Z, KUANG L, SU M, MU D. Nosocomial infection by Klebsiella pneumoniae among neonates: a molecular epidemiological study[J]. Journal of Hospital Infection, 2021, 108: 174-180.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张亚南,丁赞博,孔一鸣,刘尊杰,李兆娜,仝净净,崔晶花. 新生儿重症监护病房患儿粪便肺炎克雷伯菌分离株毒力特征分析[J]. 微生物学通报, 2024, 51(7): 2663-2675

复制
分享
文章指标
  • 点击次数:139
  • 下载次数: 359
  • HTML阅读次数: 388
  • 引用次数: 0
历史
  • 收稿日期:2023-11-20
  • 录用日期:2023-12-21
  • 在线发布日期: 2024-07-20
  • 出版日期: 2024-07-20
文章二维码