科微学术

微生物学通报

棘突蛋白氨基端嵌入标签(记)蛋白的重组猪流行性腹泻病毒的拯救和鉴定
作者:
基金项目:

上海市科技创新行动计划扬帆专项(22YF1440600);动物疾病防控团队(沪农科卓[2022]012)


Rescue and identification of a recombinant porcine epidemic diarrhea virus carrying a tagged peptide at the N terminus of S protein
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [14]
  • | | |
  • 文章评论
    摘要:

    【背景】猪流行性腹泻(porcine epidemic diarrhea,PED)是严重影响养猪业健康发展的动物传染病,其致病原为猪流行性腹泻病毒(porcine epidemic diarrhea virus,PEDV)。PEDV结构蛋白之一——棘突蛋白(spike protein,S protein)负责病毒的侵染、入胞等过程,该蛋白结构和功能研究是PEDV分子生物学研究的热点。S蛋白分为两个功能域,N端的S1亚单位和C端的S2亚单位,以往研究表明PEDV DR13att毒株S1N(19−233 aa)结构域缺失,不影响DR13att毒株的存活和增殖。【目的】基于靶向RNA重组技术,在PEDV (DR13att) S1N结构域分别引入HA标签基因、抗坏血酸过氧化物酶(APEX2)基因,构建重组PEDV,考察S1N结构域能否被标签(记)蛋白或多肽替换。【方法】利用靶向RNA重组技术的PEDV反向遗传学操作平台,将转移载体p-PEDV-DR13att的S1N结构域(1−234 aa)分别替换成HA基因、APEX2基因,进行重组转移载体的构建,再分别将线性化的载体体外转录的RNA转染至mPEDV感染的LR7细胞,然后在Vero细胞上拯救重组PEDV。通过观察细胞病变效应(cytopathic effect,CPE)、RT-PCR检测、测序、间接免疫荧光分析(immunofluorescence assay,IFA)、Western blotting检测对重组病毒进行验证,最后测定重组病毒滴度并绘制重组病毒生长曲线,探究重组病毒与亲本病毒的生长特性。【结果】构建的重组病毒经过拯救和传代,发现引入HA标签蛋白的重组猪流行性腹泻病毒rPEDV-DR13-S1N-HA (rPEDV-DSH)在P1代出现细胞病变,引入APEX2蛋白的重组猪流行性腹泻病毒rPEDV-DR13-S1N-APEX2(rPEDV-DSA)盲传至P4代,未出现细胞病变。对P4代的rPEDV-DSH、rPEDV-DSA进行RT-PCR检测、测序、间接免疫荧光分析、蛋白质印迹法验证,证实引入HA标签的重组病毒rPEDV-DSH拯救成功,而携带APEX2的重组病毒未能拯救成功。重组病毒rPEDV-DSH生长曲线表明rPEDV-DSH与亲本毒株DR13att有相似的生长趋势,但病毒增殖水平显著低于亲本毒株。【结论】HA标签替换S1N(1−234 aa)结构域的重组PEDV rPEDV-DSH成功拯救,为进一步研究S蛋白与宿主细胞的互作机制建立了基础。

    Abstract:

    [Background] Porcine epidemic diarrhea caused by porcine epidemic diarrhea virus (PEDV) is a severe porcine infectious disease causing serious losses to the pig industry. The spike (S) protein, one of the structural proteins of PEDV, is responsible for viral infection and entry in host cells. The structure and function of S protein are a research hotspot in the molecular biology of PEDV. The S protein of PEDV has two functional domains: the N-terminal S1 domain and the C-terminal S2 domain. Deletion of the S1N domain (position: 19−233 aa) did not impair the survival or propagation of the PEDV strain DR13att in vitro. [Objective] To know whether a tagged protein or peptide can substitute the S1N domain, we introduced the HA tag and soybean ascorbate peroxidase (APEX2) gene respectively into the S1Ndomain of DR13att to establish recombinant viruses by targeted RNA recombination. [Methods] The S1N domain (position: 1−234 aa) of the transfer vector p-PEDV-DR13att was respectively substituted with HA gene and APEX2 gene and the transfer vectors were linearized. The RNA of linearized transfer vectors were electrotransferred to the LR7 cells infected with mPEDV, and the recombinant PEDV was rescued on Vero cells. The recombinant virus was validated by observation of cytopathic effect (CPE), RT-PCR, sequencing, indirect immunofluorescence assay (IFA), and Western blotting. Finally, the titer of each recombinant virus was measured and the growth curve of each recombinant virus was plotted to reveal the growth characteristics of the recombinant viruses and their parent virus. [Results] The constructed recombinant viruses were rescued and passaged. The recombinant virus rPEDV-DR13-S1N-HA (rPEDV-DSH) carrying the HA tag instead of the S1N domain showed CPE in P1. The recombinant virus rPEDV-DR13-S1N-APEX2 (rPEDV-DSA) carrying APEX2 had not presented CPE until blind passage to P4. The RT-PCR, sequencing, IFA, and Western blotting of rPEDV-DSH and rPEDV-DSA in P4 confirmed that rPEDV-DSH with the HA tag was successfully rescued, while rPEDV-DSA was not rescued. The growth curves indicated that rPEDV-DSH had a similar growth trend but decreased proliferation level compared with the parent strain DR13att. [Conclusion] The recombinant virus rPEDV-DSH carrying a HA tag in the S1N domain (position: 1−234 aa) was successfully rescued, which laid a foundation for further research on the interaction mechanism between the S protein and host cells.

    参考文献
    [1] SUN RQ, CAI RJ, CHEN YQ, LIANG PS, CHEN DK, SONG CX. Outbreak of porcine epidemic diarrhea in suckling piglets, China[J]. Emerging Infectious Diseases, 2012, 18(1): 161-163.
    [2] HUANG YW, DICKERMAN AW, PIÑEYRO P, LI L, FANG L, KIEHNE R, OPRIESSNIG T, MENG XJ. Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States[J]. mBio, 2013, 4(5): e00737-e00713.
    [3] PENSAERT MB, de BOUCK P. A new coronavirus- like particle associated with diarrhea in swine[J]. Archives of Virology, 1978, 58(3): 243-247.
    [4] LEE C. Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus[J]. Virology Journal, 2015, 12: 193.
    [5] 沈媚, 陈冰清, 于瑞嵩, 朱于敏, 李震. 冠状病毒S蛋白及其受体的结构和功能[J]. 微生物学通报, 2017, 44(10): 2452-2462. SHEN M, CHEN BQ, YU RS, ZHU YM, LI Z. Structure and function of coronaviral S proteins and their receptors[J]. Microbiology China, 2017, 44(10): 2452-2462(in Chinese).
    [6] LI WT, van KUPPEVELD FJM, HE QG, ROTTIER PJM, BOSCH BJ. Cellular entry of the porcine epidemic diarrhea virus[J]. Virus Research, 2016, 226: 117-127.
    [7] PENG GQ, SUN DW, RAJASHANKAR KR, QIAN ZH, HOLMES KV, LI F. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(26): 10696-10701.
    [8] CRIVAT G, TARASKA JW. Imaging proteins inside cells with fluorescent tags[J]. Trends in Biotechnology, 2012, 30(1): 8-16.
    [9] Schatten H, Eisenstark A. Methods in Molecular Biology[M]. New York: Humana Press, 2015.
    [10] RHEE HW, ZOU P, UDESHI ND, MARTELL JD, MOOTHA VK, CARR SA, TING AY. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging[J]. Science, 2013, 339(6125): 1328-1331.
    [11] LAM SS, MARTELL JD, KAMER KJ, DEERINCK TJ, ELLISMAN MH, MOOTHA VK, TING AY. Directed evolution of APEX2 for electron microscopy and proximity labeling[J]. Nature Methods, 2015, 12: 51-54.
    [12] MÜLLER M, JAMES C, LENZ C, URLAUB H, KEHLENBACH RH. Probing the environment of emerin by enhanced ascorbate peroxidase 2(APEX2)-mediated proximity labeling[J]. Cells, 2020, 9(3): 605.
    [13] MICK DU, RODRIGUES RB, LEIB RD, ADAMS CM, CHIEN AS, GYGI SP, NACHURY MV. Proteomics of primary Cilia by proximity labeling[J]. Developmental Cell, 2015, 35(4): 497-512.
    [14] UMMETHUM H, HAMPERL S. Proximity labeling techniques to study chromatin[J]. Frontiers in Genetics, 2020, 11: 450.
    [15] ZHEN Y, HAUGSTEN EM, SINGH SK, WESCHE J. Proximity labeling by a recombinant APEX2-FGF1 fusion protein reveals interaction of FGF1 with the proteoglycans CD44 and CSPG4[J]. Biochemistry, 2018, 57(26): 3807-3816.
    [16] LI CH, LI Z, ZOU Y, WICHT O, van KUPPEVELD FJM, ROTTIER PJM, BOSCH BJ. Manipulation of the porcine epidemic diarrhea virus genome using targeted RNA recombination[J]. PLoS One, 2013, 8(8): e69997.
    [17] HUANG MS, LIN WC, CHANG JH, CHENG CH, WANG HY, MOU KY. The cysteine-free single mutant C32S of APEX2 is a highly expressed and active fusion tag for proximity labeling applications[J]. Protein Science: a Publication of the Protein Society, 2019, 28(9): 1703-1712.
    [18] REED LJ, MUENCH H. A simple method of estimating fifty per cent endpoints[J]. American Journal of Epidemiology, 1938, 27(3): 493-497.
    [19] WANG XT, CHEN BQ, YU RS, SI FS, XIE CF, LI Z, DONG SJ, ZHANG DJ. Magnolol, a neolignan-like drug, inhibits porcine epidemic diarrhea virus replication in cultured cells[J]. Pathogens, 2023, 12(2): 263.
    [20] WICHT O, LI WT, WILLEMS L, MEULEMAN TJ, WUBBOLTS RW, van KUPPEVELD FJM, ROTTIER PJM, BOSCH BJ. Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture[J]. Journal of Virology, 2014, 88(14): 7952-7961.
    [21] BOSCH BJ, van der ZEE R, de HAAN CAM, ROTTIER PJM. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex[J]. Journal of Virology, 2003, 77(16): 8801-8811.
    [22] CHEN J, FAN J, CHEN ZL, ZHANG MM, PENG HR, LIU J, DING LF, LIU MB, ZHAO C, ZHAO P, ZHANG SY, ZHANG XY, XU JQ. Nonmuscle myosin heavy chain IIA facilitates SARS-CoV-2 infection in human pulmonary cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(50): e2111011118.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙如晶,董世娟,于瑞嵩,李震,李春华,司伏生,谢春芳,陈冰清,张道敬. 棘突蛋白氨基端嵌入标签(记)蛋白的重组猪流行性腹泻病毒的拯救和鉴定[J]. 微生物学通报, 2024, 51(7): 2534-2545

复制
相关视频

分享
文章指标
  • 点击次数:165
  • 下载次数: 575
  • HTML阅读次数: 478
  • 引用次数: 0
历史
  • 收稿日期:2024-01-24
  • 录用日期:2024-02-26
  • 在线发布日期: 2024-07-20
  • 出版日期: 2024-07-20
文章二维码