科微学术

微生物学通报

老面中玉米赤霉烯酮消减乳酸菌的筛选、鉴定及机理解析
作者:
基金项目:

国家自然科学基金(32060205);广西壮族自治区自然科学基金(2023JJA130155)


Screening, identification, and mechanism elucidation of zearalenone-reducing lactic acid bacteria from Chinese sourdough
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • | | | |
  • 文章评论
    摘要:

    【背景】玉米赤霉烯酮(zearalenone,ZEN)是一种由镰刀菌属真菌产生的具有雌激素效应的真菌毒素,是世界范围内严重危害人类健康和农业安全的污染物之一。乳酸菌作为一类被公认安全(generally recognized as safe,GRAS)的食品级非致病微生物,近年研究显示其具有良好的真菌毒素消减能力,为其在保障食品安全方面带来潜在应用前景。【目的】以来自山东、河南和甘肃等7份老面样品作为研究对象,从中筛选具有消减ZEN活性的乳酸菌,探究该菌对ZEN的吸附机理。【方法】利用稀释平板涂布法获得菌株;超高效液相色谱检测具有消减ZEN活性的菌株,质谱(mass spectrometry)确定代谢产物;16s rRNA基因序列分析比对确定菌株属种,透射电镜(transmission electron microscopy,SEM)观察菌株形态;分析不同初始毒素浓度及菌体浓度下的吸附效果,对其进行动力学模型拟合;定位吸附位点并通过傅里叶变换红外光谱(Fourier transform infrared spectroscopy,FTIR)分析确定菌株中参与吸附ZEN的官能团,阐明对ZEN的吸附机理。【结果】初步筛选获得63株乳酸菌,从中复筛获得3株具有消减ZEN活性的乳酸菌,经鉴定:菌株6-8和菌株18-2为短促生乳杆菌(Levilactobacillus brevis),菌株12-6为热带醋杆菌(Acetobacter tropicalis)。两株短促生乳杆菌具有降解效果,在ZEN浓度为10 mg/L的条件下,48 h内降解率分别达到85.5%和87.3%,质谱结果显示降解产物为α-ZEL;另一株具有吸附效果,在菌株浓度为4.26×1010 CFU/mL、ZEN浓度为10 mg/L条件下,20 min内吸附率达到62.9%,灭活后吸附率上升20%。吸附过程同时符合准一级(pseudo-first-order)动力学及准二级(pseudo-second-order)动力学模型。傅里叶变换红外光谱结果显示菌株12-6的主要吸附位点为细胞壁上的肽聚糖与磷壁酸分子,羟基、次甲基、羧基和酰胺基等作为主要官能团参与吸附。【结论】菌株6-8和菌株18-2对ZEN有较强的降解能力;菌株12-6对ZEN有较强的吸附能力。其吸附动力学符合准一级及准二级动力学模型,吸附位点为细胞壁上的磷壁酸及肽聚糖分子。本研究为乳酸菌清除食品和饲料中有害物质的应用提供了理论基础。

    Abstract:

    [Background] Zearalenone (ZEN), a mycotoxin with estrogenic effects produced by Fusarium, is one of the pollutants that seriously jeopardize human health and agricultural safety worldwide. As a class of food-grade non-pathogenic microorganisms generally recognized as safe (GRAS), lactic acid bacteria have been proved to have good mycotoxin-reducing ability in recent years, demonstrating the application potential in safeguarding food safety. [Objective] To screen the lactic acid bacteria capable of reducing ZEN from seven Chinese sourdough samples collected from Shandong, Henan, and Gansu, and investigate the reducing mechanisms of ZEN by the bacteria. [Methods] The strains were isolated by the dilution-plate coating method. Ultra-high performance liquid chromatography was employed to screen the strains with ZEN-reducing activity, mass spectrometry (Q exactive) to identify the metabolites, and transmission electron microscopy (SEM) to observe the morphology of the strains. The adsorption effects were examined at different initial toxin concentrations and bacterial concentrations, and a kinetic model was fitted. Fourier transform infrared spectroscopy (FTIR) was employed to identify the functional groups involved in the adsorption of ZEN and elucidate the adsorption mechanism of ZEN. [Results] A total of 63 strains of Lactobacillus were isolated from the preliminary screening, and then three strains with ZEN-reducing activity were obtained. Strains 6-8 and 18-2 were identified as Levilactobacillus brevis, and strain 12-6 as Acetobacter tropicalis. The two strains of L. brevis had ZEN-degrading effects, with the degradation rates of 85.5% and 87.3%, respectively, within 48 h at ZEN concentration of 10 mg/L. The mass spectrometry results showed that the degradation product was α-ZEL. The other strain had a ZEN-adsorbing effect, with the adsorption rate reaching 62.9% within 20 min at a bacterial concentration of 4.26×1010 CFU/mL and a ZEN concentration of 10 mg/L. Moreover, the adsorption rate increased by 20% after strain inactivation. The adsorption process was fitted with both pseudo-first-order and pseudo-second-order models. Fourier transform infrared spectroscopy (FTIR) showed that the main adsorption sites of strain 12-6 were peptidoglycan and teichoic acid in the cell wall, involving hydroxyl, methenyl, carboxyl, and amide groups. [Conclusion] L. brevis 6-8 and 18-2 showed strong degradation capacity against ZEN, and A. tropicalis12-6 had a strong adsorption capacity for ZEN. The adsorption kinetics conformed to pseudo-first-order and pseudo-second-order models, with the adsorption sites at teichoic acid and peptidoglycan in the cell wall. This study provides a theoretical basis for the application of lactic acid bacteria in the removal of harmful substances from food and feed.

    参考文献
    [1] 隋凯, 李军, 郑江. 多功能柱净化-高效液相色谱法检测谷物中的玉米赤霉烯酮[J]. 分析试验室, 2006, 25(1): 99-102. SUI K, LI J, ZHENG J. Determination of zearalenone in cereal grains by high performance liquid chromatography with multifunction cleanup column[J]. Chinese Journal of Analysis Laboratory, 2006, 25(1): 99-102(in Chinese).
    [2] 马传国, 王英丹. 玉米赤霉烯酮污染状况及毒性的研究进展[J]. 河南工业大学学报(自然科学版), 2017, 38(1): 122-128. MA CG, WANG YD. Research progress on pollution status and toxicity of zearalenone[J]. Journal of Henan University of Technology (Natural Science Edition), 2017, 38(1): 122-128(in Chinese).
    [3] PLEADIN J, SOKOLOVIĆ M, PERŠI N, ZADRAVEC M, JAKI V, VULIĆ A. Contamination of maize with deoxynivalenol and zearalenone in Croatia[J]. Food Control, 2012, 28(1): 94-98.
    [4] WANG GF, LIAN C, XI YF, SUN ZM, ZHENG SL. Evaluation of nonionic surfactant modified montmorillonite as mycotoxins adsorbent for aflatoxin B1 and zearalenone[J]. Journal of Colloid and Interface Science, 2018, 518: 48-56.
    [5] LOI M, FANELLI F, LIUZZI V, LOGRIECO A, MULÈ G. Mycotoxin biotransformation by native and commercial enzymes: present and future perspectives[J]. Toxins, 2017, 9(4): 111.
    [6] WANG N, LI P, PAN JW, WANG MY, LONG M, ZANG J, YANG SH. Bacillus velezensis A2 fermentation exerts a protective effect on renal injury induced by zearalenone in mice[J]. Scientific Reports, 2018, 8: 13646.
    [7] 邓凤如, 陈嘉杭, 贾淑卉, 姚楚莹, 李容洁, 邓诣群, 文继开. 玉米赤霉烯酮脱毒菌PA26-7的分离鉴定及其应用效果评价[J]. 微生物学通报, 2023, 50(8): 3404-3416. DENG FR, CHEN JH, JIA SH, YAO CY, LI RJ, DENG YQ, WEN JK. Screening and performance evaluation of a zearalenone-degrading bacterial isolate PA26-7[J]. Microbiology China, 2023, 50(8): 3404-3416(in Chinese).
    [8] 潘佳雯. 戊糖片球菌XY46对玉米赤霉烯酮脱毒效果的研究[D]. 沈阳: 沈阳农业大学硕士学位论文, 2019. PAN JW. Study on detoxification effect of Pediococcus pentosaceus XY46 on zearalenone[D]. Shenyang: Master’s Thesis of Shenyang Agricultural University, 2019(in Chinese).
    [9] 陈漪汶. 吸附玉米赤霉烯酮乳酸菌的筛选和黑水虻对呕吐毒素的耐受及积累量[D]. 广州: 华南农业大学硕士学位论文, 2022. CHEN YW. Screening of a lactic acid bacteria to the adsorption of zearalenone and the tolerance and accumulation of deoxynivalenol in Black Soldier Fly[D]. Guangzhou: Master’s Thesis of South China Agricultural University, 2022(in Chinese).
    [10] VEGA MF, DIEGUEZ SN, RICCIO B, ARANGUREN S, GIORDANO A, DENZOIN L, SORACI AL, TAPIA MO, ROSS R, APÁS A, GONZÁLEZ SN. Zearalenone adsorption capacity of lactic acid bacteria isolated from pigs[J]. Brazilian Journal of Microbiology, 2017, 48(4): 715-723.
    [11] KRÓL A, POMASTOWSKI P, RAFIŃSKA K, RAILEAN-PLUGARU V, WALCZAK J, BUSZEWSKI B. Microbiology neutralization of zearalenone using Lactococcus lactis and Bifidobacterium sp.[J]. Analytical and Bioanalytical Chemistry, 2018, 410(3): 943-952.
    [12] SANGSILA A, FAUCET-MARQUIS V, PFOHL- LESZKOWICZ A, ITSARANUWAT P. Detoxification of zearalenone by Lactobacillus pentosus strains[J]. Food Control, 2016, 62: 187-192.
    [13] ZOGHI A, KHOSRAVI-DARANI K, SOHRABVANDI S. Surface binding of toxins and heavy metals by probiotics[J]. Mini-Reviews in Medicinal Chemistry, 2014, 14(1): 84-98.
    [14] NIDERKORN V, MORGAVI DP, ABOAB B, LEMAIRE M, BOUDRA H. Cell wall component and mycotoxin moieties involved in the binding of fumonisin B1 and B2 by lactic acid bacteria[J]. Journal of Applied Microbiology, 2009, 106(3): 977-985.
    [15] KATINA K, MAINA NH, JUVONEN R, FLANDER L, JOHANSSON L, VIRKKI L, TENKANEN M, LAITILA A. In situ production and analysis of Weissella confusa dextran in wheat sourdough[J]. Food Microbiology, 2009, 26(7): 734-743.
    [16] IMADE FN, HUMZA M, DADA OA, ULLAH S, JAHAN I, ESEIGBE D, GENG HR, ZHENG YQ, XING FG, LIU Y. Isolation and characterization of novel soil bacterium, Klebsiella pneumoniae strain GS7-1 for the degradation of zearalenone in major cereals[J]. Food Control, 2023, 143: 109287.
    [17] YOON SH, HA SM, KWON S, LIM J, KIM Y, SEO H, CHUN J. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies[J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(5): 1613-1617.
    [18] 叶金, 吴宇, 辛媛媛, 周明慧, 谢刚, 王松雪. 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱快速精准测定粮食中多种真菌毒素[J]. 分析测试学报, 2017, 36(4): 449-456. YE J, WU Y, XIN YY, ZHOU MH, XIE G, WANG SX. Determination of mycotoxins in cereals by UPLC-quadrupole/orbitrap high resolution mass spectrometry[J]. Journal of Instrumental Analysis, 2017, 36(4): 449-456(in Chinese).
    [19] 葛娜. 失活微生物细胞去除橙汁中链格孢霉素TeA的分子机制[D]. 武汉: 华中农业大学硕士学位论文, 2018. GE N. Molecular mechanism of alternaria toxin tenuazonic acid from citrus juice by inactived microbial cells[D]. Wuhan: Master’s Thesis of Huazhong Agricultural University, 2018(in Chinese).
    [20] 丽丽. 粘质红酵母菌WT6-5对水中Pb2+的耐受性及吸附作用研究[D]. 沈阳: 东北大学硕士学位论文, 2016. LI L. Study on heavy metal resistance and biosorption of lead (II) ions from aqueous solution by WT6-5[D]. Shenyang: Master’s Thesis of Northeastern University, 2016(in Chinese).
    [21] ADÁCSI C, KOVÁCS S, PÓCSI I, PUSZTAHELYI T. Elimination of deoxynivalenol, aflatoxin B1, and zearalenone by Gram-positive microbes (firmicutes)[J]. Toxins, 2022, 14(9): 591.
    [22] MOLINA-MOLINA JM, REAL M, JIMENEZ-DIAZ I, BELHASSEN H, HEDHILI A, TORNÉ P, FERNÁNDEZ MF, OLEA N. Assessment of estrogenic and anti-androgenic activities of the mycotoxin zearalenone and its metabolites using in vitro receptor-specific bioassays[J]. Food and Chemical Toxicology: an International Journal Published for the British Industrial Biological Research Association, 2014, 74: 233-239.
    [23] EZE UA, HUNTRISS J, ROUTLEDGE MN, GONG YY, Connolly L. The effect of individual and mixtures of mycotoxins and persistent organochloride pesticides on oestrogen receptor transcriptional activation using in vitro reporter gene assays[J]. Food and Chemical Toxicology, 2019, 130: 68-78.
    [24] 张梦梅. 益生菌吸附氯氰菊酯特性及机理的研究[D]. 雅安: 四川农业大学硕士学位论文, 2020. ZHANG MM. Study on the adsorption characteristics and mechanisms of cypermethrin by probiotics[D]. Ya’an: Master’s Thesis of Sichuan Agricultural University, 2020(in Chinese).
    [25] AKAR T, GÜRAY T, YILMAZER DT, TUNALI AKAR S. Biosorptive detoxification of zearalenone biotoxin by surface-modified renewable biomass: process dynamics and application[J]. Journal of the Science of Food and Agriculture, 2019, 99(4): 1850-1861.
    [26] KRISTOFFERSEN KA, MÅGE I, WUBSHET SG, BÖCKER U, RIISER DANKEL K, LISLELID A, RØNNINGEN MA, AFSETH NK. FTIR-based prediction of collagen content in hydrolyzed protein samples[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 301: 122919.
    [27] GE N, XU JJ, PENG BZ, PAN SY. Adsorption mechanism of tenuazonic acid using inactivated lactic acid bacteria[J]. Food Control, 2017, 82: 274-282.
    [28] 陈霈瑶, 郑钢, 童雨翠, 刘梦瑶, 程强, 张日俊. 醋杆菌研究进展及其应用前景[J]. 饲料工业, 2021, 42(24): 13-17. CHEN PY, ZHENG G, TONG YC, LIU MY, CHENG Q, ZHANG RJ. Research progress and application prospect of Acetobacter[J]. Feed Industry, 2021, 42(24): 13-17(in Chinese).
    [29] CUAMATZIN-GARCÍA L, RODRÍGUEZ-RUGARCÍA P, EL-KASSIS EG, GALICIA G, de LOURDES MEZA-JIMÉNEZ M, del ROCÍO BAÑOS-LARA M, ZARAGOZA-MALDONADO DS, PÉREZ- ARMENDÁRIZ B. Traditional fermented foods and beverages from around the world and their health benefits[J]. Microorganisms, 2022, 10(6): 1151.
    [30] 张楠, 杨洁秋, 蔡思恒, 陈欣欣, 彭堂见, 杨飞. Sphingopyxis sp. YF1吸附镉的特性及其机制[J]. 微生物学通报, 2023, 50(8): 3330-3344. ZHANG N, YANG JQ, CAI SH, CHEN XX, PENG TJ, YANG F. Characteristics and mechanisms of cadmium adsorption by Sphingopyxis sp. YF1[J]. Microbiology China, 2023, 50(8): 3330-3344(in Chinese).
    [31] FUCHS S, SONTAG G, STIDL R, EHRLICH V, KUNDI M, KNASMÜLLER S. Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria[J]. Food and Chemical Toxicology: an International Journal Published for the British Industrial Biological Research Association, 2008, 46(4): 1398-1407.
    [32] 张蓉蓉. 三种典型土壤胶体与耐性细菌对镉铅的吸附解吸特性研究[D]. 南宁: 广西大学硕士学位论文, 2020. ZHANG RR. Study on adsorption and desorption characteristics of cadmium and lead by three typical soil colloids and tolerant bacteria[D]. Nanning: Master’s Thesis of Guangxi University, 2020(in Chinese).
    [33] 李兰松. 重金属吸附菌的选育、吸附特性和机理研究[D]. 太原: 太原理工大学博士学位论文, 2016. LI LS. Breeding, adsorption characteristics and mechanism of heavy metal adsorption bacteria[D]. Taiyuan: Doctoral Dissertation of Taiyuan University of Technology, 2016(in Chinese).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

贺子元,秦菲,郭宝元,玉万国,汪洋. 老面中玉米赤霉烯酮消减乳酸菌的筛选、鉴定及机理解析[J]. 微生物学通报, 2024, 51(7): 2521-2533

复制
分享
文章指标
  • 点击次数:107
  • 下载次数: 463
  • HTML阅读次数: 306
  • 引用次数: 0
历史
  • 收稿日期:2023-09-27
  • 录用日期:2023-11-16
  • 在线发布日期: 2024-07-20
  • 出版日期: 2024-07-20
文章二维码