科微学术

微生物学通报

过表达草菇Vvmapk对球孢白僵菌生长、抗逆和毒力的影响
作者:
基金项目:

重庆市自然科学基金(CSTB2022NSCQ-MSX0261);重庆市教育委员会科学技术计划重点研究项目(KJZD-K202201601);重庆第二师范学院大学生科研项目(KY20230001)


Overexpression of Vvmapk affects growth, stress responses, and virulence of Beauveria bassiana
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • | | | |
  • 文章评论
    摘要:

    【背景】促分裂素原活化蛋白激酶(mitogen-activated protein kinase,MAPK)是真核生物的重要信号分子,介导细胞增殖、分化、细胞凋亡和对外界的应激反应。【目的】研究草菇(Volvariella volvacea)Vvmapk基因功能并进行开发应用。【方法】在Vvpgd强启动子驱动下在球孢白僵菌(Beauveria bassiana)中过表达Vvmapk基因,检测过表达菌株在生长发育、逆境胁迫和毒力方面的变化。【结果】过表达Vvmapk基因的球孢白僵菌生长速度较野生型并未改变,但色素积累和分生孢子的产量显著增加;在热、盐和紫外胁迫下,分生孢子的萌发率显著升高;对大蜡螟(Galleria mellonella)的杀虫能力增强,但对腐皮镰刀菌(Fusarium solani)和尖孢镰刀菌(Fusarium oxysporum)的抑菌效果却减弱。进一步研究发现:过表达菌株中与分生孢子发育相关的BbbrlABbabaABbwetA基因表达上调。【结论】草菇VvMAPK正调控球孢白僵菌色素生成、分生孢子产量及对胁迫环境的抗性。本研究为草菇的基因功能研究和应用奠定了理论基础。

    Abstract:

    [Background] Mitogen-activated protein kinase (MAPK) plays pivotal roles in cell proliferation, differentiation, apoptosis, and stress responses in eukaryotes. [Objective] To identify the roles of Vvmapk in Volvariella volvacea for applications. [Methods] Vvmapk was overexpressed under the control of Vvpgd promoter in Beauveria bassiana, and the roles of Vvmapk in the growth, development, stress responses, and virulence were examined. Compared with the wild type, the overexpression of Vvmapk in B. bassiana increased the pigment level and conidial yield but did not affect the growth. The strains overexpressing this gene displayed higher conidial germination rates under heat shock, salt, and UV-irradiation stress conditions than the control. Furthermore, Vvmapk overexpression endowed the fungi with stronger virulence against Galleria mellonella but weaker antagonistic effects against Fusarium solani and Fusarium oxysporum than the wild type. The relative transcription levels of BbBrlA, BbabaA, and BbwetA associated with the conidial development were significantly up-regulated in the recombinant strain. [Conclusion] VvMAPK positively regulated the conidial development, pigmentation level, and virulence of B. bassiana. The findings laid a theoretical foundation for the functional identification and applications of V. volvacea genes.

    参考文献
    [1] YUE P, ZHANG H, TONG XX, PENG T, TANG P, GAO TH, GUO JL. Genome-wide identification and expression profiling of thes MAPK, MAPKK, and MAPKKK gene families in Ophiocordyceps sinensis[J]. Gene, 2022, 807: 145930.
    [2] MARTÍNEZ-SOTO D, RUIZ-HERRERA J. Functional analysis of the MAPK pathways in fungi[J]. Revista Iberoamericana de Micología, 2017, 34(4): 192-202.
    [3] YANG XQ, LIN RM, XU K, GUO LZ, YU H. Comparative proteomic analysis within the developmental stages of the mushroom white Hypsizygus marmoreus[J]. Journal of Fungi, 2021, 7(12): 1064.
    [4] GAO Q, FAN YY, WEI S, SONG S, GUO Y, WANG SX, LIU Y, YAN D. Insights into the global transcriptome response of Lentinula edodes mycelia during aging[J]. Journal of Fungi, 2023, 9(3): 379.
    [5] 何焕清, 肖自添, 彭洋洋, 刘明, 徐江. 草菇栽培技术发展历程与创新研究进展[J]. 广东农业科学, 2020, 47(12): 53-61. HE HQ, XIAO ZT, PENG YY, LIU M, XU J. Development history and innovation research progress of straw mushroom cultivation technology[J]. Guangdong Agricultural Sciences, 2020, 47(12): 53-61(in Chinese).
    [6] BAI J, LI J, PAN RR, ZHU Y, XIAO X, LI Y, LI CT. Polysaccharides from Volvariella volvacea inhibit fat accumulation in C. elegans dependent on the aak-2/nhr-49-mediated pathway[J]. Journal of Food Biochemistry, 2021, 45(11): e13912.
    [7] LI HB, HE ZX, JIANG YZ, KAN J, PENG T, ZHONG MQ, HU Z. Bioconversion of bamboo shoot shells through the cultivation of the edible mushrooms Volvariella volvacea[J]. Ecotoxicology, 2021, 30(7): 1476-1486.
    [8] 赵妍, 查磊, 陈明杰, 严舒瀚, 张劲松, 马丹丹, 严培兰. 草菇4℃贮藏期间的品质及生理生化研究[J]. 分子植物育种, 2018, 16(21): 7179-7186. ZHAO Y, ZHA L, CHEN MJ, YAN SH, ZHANG JS, MA DD, YAN PL. Morphological and physiological indexes of straw mushroom (Volvariella volvace) during storage at 4℃[J]. Molecular Plant Breeding, 2018, 16(21): 7179-7186(in Chinese).
    [9] 陈金峰. 草菇VvLaeA调控球孢白僵菌的生长发育[J]. 生物工程学报, 2023, 39(2): 685-694. CHEN JF. Effect of VvLaeA on the growth and development of Beauveria bassiana[J]. Chinese Journal of Biotechnology, 2023, 39(2): 685-694(in Chinese).
    [10] FANG WG, ZHANG YJ, YANG XY, ZHENG XL, DUAN H, LI Y, PEI Y. Agrobacterium tumefaciens- mediated transformation of Beauveria bassiana using an herbicide resistance gene as a selection marker[J]. Journal of Invertebrate Pathology, 2004, 85(1): 18-24.
    [11] 张胜利, 李增智. 球孢白僵菌对两种植物病原镰孢的拮抗作用[J]. 中国生物防治学报, 2011, 27(3): 349-356. ZHANG SL, LI ZZ. Antagonism of Beauveria bassiana against two Fusarium spp. pathogenic to cotton[J]. Chinese Journal of Biological Control, 2011, 27(3): 349-356(in Chinese).
    [12] ORTIZ-URQUIZA A, KEYHANI NO. Stress response signaling and virulence: insights from entomopathogenic fungi[J]. Current Genetics, 2015, 61(3): 239-249.
    [13] CHEN XX, XU C, QIAN Y, LIU R, ZHANG QQ, ZENG GH, ZHANG X, ZHAO H, FANG WG. MAPK cascade-mediated regulation of pathogenicity, conidiation and tolerance to abiotic stresses in the entomopathogenic fungus Metarhizium robertsii[J]. Environmental Microbiology, 2016, 18(3): 1048-1062.
    [14] ZENG GH, CHEN XX, ZHANG X, ZHANG QQ, XU C, MI WB, GUO N, ZHAO H, YOU Y, DRYBURGH FJ, BIDOCHKA MJ, ST LEGER RJ, ZHANG L, FANG WG. Genome-wide identification of pathogenicity, conidiation and colony sectorization genes in Metarhizium robertsii[J]. Environmental Microbiology, 2017, 19(10): 3896-3908.
    [15] CHEN JF, LIU Y, TANG GR, JIN D, CHEN X, PEI Y, FAN YH. The secondary metabolite regulator, BbSmr1, is a central regulator of conidiation via the BrlA-AbaA-WetA pathway in Beauveria bassiana[J]. Environmental Microbiology, 2021, 23(2): 810-825.
    [16] ZHANG YJ, ZHAO JH, FANG WG, ZHANG JQ, LUO ZB, ZHANG M, FAN YH, PEI Y. Mitogen-activated protein kinase hog1 in the entomopathogenic fungus Beauveria bassiana regulates environmental stress responses and virulence to insects[J]. Applied and Environmental Microbiology, 2009, 75(11): 3787-3795.
    [17] LIU J, SUN HH, YING SH, FENG MG. The Hog1-like MAPK Mpk3 collaborates with Hog1 in response to heat shock and functions in sustaining the biological control potential of a fungal insect pathogen[J]. Applied Microbiology and Biotechnology, 2017, 101(18): 6941-6949.
    [18] LUO XD, KEYHANI NO, YU XD, HE ZJ, LUO ZB, PEI Y, ZHANG YJ. The MAP kinase Bbslt2 controls growth, conidiation, cell wall integrity, and virulence in the insect pathogenic fungus Beauveria bassiana[J]. Fungal Genetics and Biology, 2012, 49(7): 544-555.
    [19] JI YJ, YANG F, MA DM, ZHANG JQ, WAN Z, LIU W, LI RY. HOG-MAPK signaling regulates the adaptive responses of Aspergillus fumigatus to thermal stress and other related stress[J]. Mycopathologia, 2012, 174(4): 273-282.
    [20] KANSHIN E, KUBINIOK P, THATTIKOTA Y, D’AMOURS D, THIBAULT P. Phosphoproteome dynamics of Saccharomyces cerevisiae under heat shock and cold stress[J]. Molecular Systems Biology, 2015, 11(6): 813.
    [21] HERRERO de DIOS C, ROMAN E, ALONSO MONGE R, PLA J. The role of MAPK signal transduction pathways in the response to oxidative stress in the fungal pathogen Candida albicans: implications in virulence[J]. Current Protein & Peptide Science, 2010, 11(8): 693-703.
    [22] CHEN JF, TAN JJ, WANG JY, MAO AJ, XU XP, ZHANG Y, ZHENG XL, LIU Y, JIN D, LI XB, FAN YH. The zinc finger transcription factor BbCmr1 regulates conidium maturation in Beauveria bassiana[J]. Microbiology Spectrum, 2022, 10(1): e0206621.
    [23] ROMÁN E, CORREIA I, PRIETO D, ALONSO R, PLA J. The HOG MAPK pathway in Candida albicans: more than an osmosensing pathway[J]. International Microbiology, 2020, 23(1): 23-29.
    [24] NUNEZ-RODRIGUEZ JC, RUIZ-ROLDÁN C, LEMOS P, MEMBRIVES S, HERA C. The phosphatase Ptc6 is involved in virulence and MAPK signaling in Fusarium oxysporum[J]. Molecular Plant Pathology, 2020, 21(2): 206-217.
    [25] FAN YH, LIU X, KEYHANI NO, TANG GR, PEI Y, ZHANG WW, TONG S. Regulatory cascade and biological activity of Beauveria bassiana oosporein that limits bacterial growth after host death[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9): E1578-E1586.
    [26] FUKUSHIMA-SAKUNO E. Bioactive small secondary metabolites from the mushrooms Lentinula edodes and Flammulina velutipes[J]. The Journal of Antibiotics, 2020, 73(10): 687-696.
    [27] XIE GB, TANG L, XIE Y, XIE LY. Secondary metabolites from Hericium erinaceus and their anti-inflammatory activities[J]. Molecules, 2022, 27(7): 2157.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈金峰,周柚杉. 过表达草菇Vvmapk对球孢白僵菌生长、抗逆和毒力的影响[J]. 微生物学通报, 2024, 51(7): 2423-2434

复制
分享
文章指标
  • 点击次数:167
  • 下载次数: 500
  • HTML阅读次数: 479
  • 引用次数: 0
历史
  • 收稿日期:2023-10-15
  • 录用日期:2023-11-09
  • 在线发布日期: 2024-07-20
  • 出版日期: 2024-07-20
文章二维码