科微学术

微生物学通报

内生真菌Epichloëguerinii对宿主德兰臭草抗病性的影响
作者:
基金项目:

新疆维吾尔自治区自然科学基金(2022D01A79)


Effects of endophytic fungus Epichloë guerinii on disease resistance of the host Melica transsilvanica
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    【背景】前期研究表明,从国内仅在天山北坡分布的德兰臭草(Melica transsilvanica)中分离得到内生真菌Epichloë guerinii SC012,是一种与禾草共生的香柱菌(Epichloë)。【目的】研究内生真菌Epichloëguerinii与宿主德兰臭草抗病性的相互关系。【方法】体外纯培养条件下内生真菌与4种常见植物病原菌的对峙试验和病原菌侵染宿主的盆栽试验。【结果】平板对峙试验中,分离自德兰臭草的一株内生真菌Epichloëguerinii对立枯丝核菌(Rhizoctonia solani)、链格孢菌(Alternaria tenuis)和禾谷炭疽菌(Colletotrichum cereale)均有抑制作用,抑制率分别为57.39%、26.30%和20.92%,且内生真菌发酵液也可有效抑制这3种病原菌的生长,抑制率分别为64.94%、32.93%和15.61%,2种体外培养试验中内生真菌对镰刀菌(Fusarium sp.)生长无影响;盆栽试验中,与Epichloëguerinii共生可以有效降低宿主德兰臭草在立枯丝核菌链格孢菌和禾谷炭疽菌侵染下的病情指数,相对防效分别为36.61%、16.01%和21.87%,除可降低立枯丝核菌发病率外,对降低其余病原菌侵染下的发病率并无显著作用。带内生真菌(E+)与不带内生真菌(E‒)的德兰臭草植株除在镰刀菌侵染下苯丙氨酸解氨酶(phenylalnine ammonialyase,PAL)活性无显著差异外,E+植株的多酚氧化酶(polyphenol oxidase,PPO)与PAL活性在各组试验中均显著高于E‒植株(P<0.05)。【结论】内生真菌Epichloëguerinii能提高宿主德兰臭草对一些特定病原菌的抗性,但对不同病原菌的抗性存在差异,这为利用禾草内生真菌进行生物防治或是抗性育种提供了依据。

    Abstract:

    [Background] Epichloë guerinii SC012 isolated from Melica transsilvanica, a plant only growing in the northern slope of the Tianshan Mountains in China, is a type of endophytic fungus of grasses. [Objective] To investigate the relationship between E. guerinii and the disease resistance of its host M. transsilvanica. [Methods] Dual-culture tests were conducted to assess the interactions between the endophytic fungus and four common plant pathogenic fungi. A pot experiment was performed to evaluate the resistance of M. transsilvanica with E. guerinii to pathogen invasion. [Results] In the dual-culture tests, E. guerinii isolated from M. transsilvanica exhibited inhibitory effects on Rhizoctonia solani, Alternaria tenuis, and Colletotrichum cereale, with the inhibition rates of 57.39%, 26.30%, and 20.92%, respectively. The fermentation broth of E. guerinii also inhibited the growth of the three pathogens, with the inhibition rates of 64.94%, 32.93%, and 15.61%, respectively. The endophytic fungus and its fermentation broth had no impact on the growth of Fusarium sp. The results of the pot experiment showed that E. guerinii reduced the disease indexes of M. transsilvanica exposed to the invasion of R. solani, A. tenuis, and C. cereale, with the relative protective effects of 36.61%, 16.01%, and 21.87%, respectively. Apart from reducing the incidence caused by R. solani, E. guerinii showed no significant effect on the incidence caused by other pathogens. M. transsilvanica plants with the endophytic fungus (E+) had higher polyphenol oxidase (PPO) and phenylalnine ammonialyase (PAL) activities than the plants without the endophytic fungus (E‒) (P<0.05), except that the PAL activity had no significant difference in the case of Fusarium sp. infection. [Conclusion] The endophytic fungus E. guerinii can enhance the resistance of M. transsilvanica to specific pathogens, while the resistance varies depending on the pathogens. The findings provide a basis for the use of endophytic fungi of grasses in the biocontrol and breeding of disease resistant crops.

    参考文献
    [1] SIEGEL MR, LATCH GM, JOHNSON MC. Fungal endophytes of grasses[J]. Annual Review of Phytopathology, 1987, 25: 293-315.
    [2] VIKUK V, YOUNG CA, LEE ST, NAGABHYRU P, KRISCHKE M, MUELLER MJ, KRAUSS J. Infection rates and alkaloid patterns of different grass species with systemic Epichloë endophytes[J]. Applied and Environmental Microbiology, 2019, 85(17): e00465-19.
    [3] 王志伟, 纪燕玲, 陈永敢. 植物内生菌研究及其科学意义[J]. 微生物学通报, 2015, 42(2): 349-363. Wang ZW, Ji YL, Chen YG. Studies and biological significances of plant endophytes[J]. Microbiology China, 2015, 42(2): 349-363(in Chinese).
    [4] WANG JJ, ZHOU YP, LIN WH, LI MM, WANG MN, WANG ZG, KUANG Y, TIAN P. Effect of an Epichloë endophyte on adaptability to water stress in Festuca sinensis[J]. Fungal Ecology, 2017, 30: 39-47.
    [5] BASTIAS DA, ALEJANDRA MARTÍNEZ-GHERSA M, BALLARÉ CL, GUNDEL PE. Epichloë fungal endophytes and plant defenses: not just alkaloids[J]. Trends in Plant Science, 2017, 22(11): 939-948.
    [6] Shi X, Qin T, Qu Y, Zhang J, Hao G, Zhao Y, Zhang Z, Zhao N, Ren A. Comparative omics analysis of endophyte-infected and endophyte-free Achnatherum sibiricum in response to pathogenic fungi[J]. Biological Control, 2022, 175: 105040.
    [7] ZHANG YW, NAN ZB, XIN XP. Response of plant fungal diseases to beef cattle grazing intensity in Hulunber grassland[J]. Plant Disease, 2020, 104(11): 2905-2913.
    [8] FISHER MC, HENK DA, BRIGGS CJ, BROWNSTEIN JS, MADOFF LC, McCRAW SL, GURR SJ. Emerging fungal threats to animal, plant and ecosystem health[J]. Nature, 2012, 484(7393): 186-194.
    [9] ZHANG ZQ, YAN XM, JONES KC, JIAO C, SUN C, LIU Y, ZHU Y, ZHANG QQ, ZHAI LM, SHEN ZY, CHEN L. Pesticide risk constraints to achieving sustainable development goals in China based on national modeling[J]. Npj Clean Water, 2022, 5: 59.
    [10] BANERJEE S, van der HEIJDEN MGA. Soil microbiomes and one health[J]. Nature Reviews Microbiology, 2023, 21(1): 6-20.
    [11] ZHENG RH, LI SJ, ZHANG X, ZHAO CQ. Biological activities of some new secondary metabolites isolated from endophytic fungi: a review study[J]. International Journal of Molecular Sciences, 2021, 22(2): 959.
    [12] 李柯, 施宠, 王文全, 李阳. 重金属Pb胁迫下内生真菌侵染对德兰臭草种子萌发及生长的影响[J]. 农业资源与环境学报, 2020, 37(2): 280-286. LI K, SHI C, WANG WQ, LI Y. Seed germination and growth effects of endophyte infection on Melica transsilvanica under Pb stress[J]. Journal of Agricultural Resources and Environment, 2020, 37(2): 280-286(in Chinese).
    [13] 施宠. 德兰臭草内生真菌生物学特性及其共生体对干旱胁迫的生理响应研究[D]. 乌鲁木齐: 新疆农业大学博士学位论文, 2017. SHI C. Biological characterization of endophytic fungus associated with Melica transsilvanica and their symbiotic physiological response to drought stress[D]. Urumqi: Doctoral Dissertation of Xinjiang Agricultural University, 2017(in Chinese).
    [14] ADESEMOYE AO, ADEDIRE CO. Use of cereals as basal medium for the formulation of alternative culture media for fungi[J]. World Journal of Microbiology and Biotechnology, 2005, 21(3): 329-336.
    [15] 赵晓静, 王萍, 李秀璋, 古丽君, 李春杰. 内生真菌在禾草体内的分布特征[J]. 草业科学, 2015, 32(8): 1206-1215. ZHAO XJ, WANG P, LI XZ, GU LJ, LI CJ. Distribution characteristics of Epichloë endophyte in gramineous grasses[J]. Pratacultural Science, 2015, 32(8): 1206-1215(in Chinese).
    [16] 施宠, 张蕊思, 黄长福, 邢圆通, 安沙舟. 微波处理构建不感染内生真菌德兰臭草种群的方法探讨[J]. 草地学报, 2016, 24(5): 1016-1021. SHI C, ZHANG RS, HUANG CF, XING YT, AN SZ. Using microwave treatment to construct endophyte-free Melica transsilvanica population[J]. Acta Agrestia Sinica, 2016, 24(5): 1016-1021(in Chinese).
    [17] 王欣禹, 周勇, 任安芝, 高玉葆. 内生真菌感染对宿主羊草抗病性的影响[J]. 生态学报, 2014, 34(23): 6789-6796. WANG XY, ZHOU Y, REN AZ, GAO YB. Effect of endophyte infection on fungal disease resistance of Leymus chinensis[J]. Acta Ecologica Sinica, 2014, 34(23): 6789-6796(in Chinese).
    [18] 李彦忠, 南志标. 牧草病害诊断调查与损失评定方法[M]. 南京: 江苏凤凰科学技术出版社, 2015. LI YZ, NAN ZB. The Methods of Diagnose, Investigation and Loss Evaluation for Forage Diseases[M]. Nanjing: Phoenix Science Press, 2015(in Chinese).
    [19] Pérez LI, Gundel PE, Zabalgogeazcoa I, Omacini M. An ecological framework for understanding the roles of Epichloë endophytes on plant defenses against fungal diseases[J]. Fungal Biology Reviews, 2020, 34(3): 115-125.
    [20] XIA C, LI NN, ZHANG YW, LI CJ, ZHANG XX, NAN ZB. Role of Epichloë endophytes in defense responses of cool-season grasses to pathogens: a review[J]. Plant Disease, 2018, 102(11): 2061-2073.
    [21] XIE FX, REN AZ, WANG YH, LIN F, GAO YB. A comparative study of the inhibitive effect of fungal endophytes on turf grass fungus pathogens[J]. Acta Ecologica Sinica, 2008, 28(8): 3913-3920.
    [22] FERNANDO K, REDDY P, HETTIARACHCHIGE IK, SPANGENBERG GC, ROCHFORT SJ, GUTHRIDGE KM. Novel antifungal activity of Lolium-associated Epichloë endophytes[J]. Microorganisms, 2020, 8(6): 955.
    [23] AMEYE M, ALLMANN S, VERWAEREN J, SMAGGHE G, HAESAERT G, SCHUURINK RC, AUDENAERT K. Green leaf volatile production by plants: a meta-analysis[J]. New Phytologist, 2018, 220(3): 666-683.
    [24] PAŃKA D. Occurrence of Neotyphodium lolii and its antifungal properties[J]. Phytopathologia Polonica, 2008, 48: 5-12.
    [25] ABO-ELYOUSR KAM, ALMASOUDI NM, ABDELMAGID AWM, ROBERTO SR, YOUSSEF K. Plant extract treatments induce resistance to bacterial spot by tomato plants for a sustainable system[J]. Horticulturae, 2020, 6(2): 36.
    [26] CARETTO S, LINSALATA V, COLELLA G, MITA G, LATTANZIO V. Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress[J]. International Journal of Molecular Sciences, 2015, 16(11): 26378-26394.
    [27] WANG XY, QIN JH, CHEN W, ZHOU Y, REN AZ, GAO YB. Pathogen resistant advantage of endophyte-infected over endophyte-free Leymus chinensis is strengthened by pre-drought treatment[J]. European Journal of Plant Pathology, 2016, 144(3): 477-486.
    [28] FUNNELL-HARRIS DL, PEDERSEN JF, SATTLER SE. Alteration in lignin biosynthesis restricts growth of Fusarium spp. in brown midrib sorghum[J]. Phytopathology®, 2010, 100(7): 671-681.
    [29] Pańka D, Piesik D, Jeske M, Baturo- ieśniewska A. Production of phenolics and the emission of volatile organic compounds by perennial ryegrass (Lolium perenne L.)/Neotyphodium lolii association as a response to infection by Fusarium poae[J]. Journal of Plant Physiology, 2013, 170(11): 1010-1019.
    [30] TIAN P, NAN ZB. Epichloë festucae var. lolii endophyte affects host response to fungal disease progression in perennial ryegrass (Lolium perenne)[J]. Science China Life Sciences, 2019, 62(9): 1264-1265.
    [31] WHITAKER BK, BAKKER MG. Bacterial endophyte antagonism toward a fungal pathogen in vitro does not predict protection in live plant tissue[J]. FEMS Microbiology Ecology, 2019, 95(2): fiy237.
    [32] YAKTI W, KOVÁCS GM, FRANKEN P. Differential interaction of the dark septate endophyte Cadophora sp. and fungal pathogens in vitro and in planta[J]. FEMS Microbiology Ecology, 2019, 95(12): fiz164.
    [33] WÄLI PR, HELANDER M, NISSINEN O, SAIKKONEN K. Susceptibility of endophyte-infected grasses to winter pathogens (snow molds)[J]. Canadian Journal of Botany, 2006, 84(7): 1043-1051.
    [34] SPANU PD. The genomics of obligate (and nonobligate) biotrophs[J]. Annual Review of Phytopathology, 2012, 50: 91-109.
    [35] CARD SD, BASTÍAS DA, CARADUS JR. Antagonism to plant pathogens by Epichloë fungal endophytes: a review[J]. Plants, 2021, 10(10): 1997.
    [36] CARD SD, FAVILLE MJ, SIMPSON WR, JOHNSON RD, VOISEY CR, de BONTH ACM, HUME DE. Mutualistic fungal endophytes in the Triticeae-survey and description[J]. FEMS Microbiology Ecology, 2014, 88(1): 94-106.
    [37] SIMPSON WR, FAVILLE MJ, MORAGA RA, WILLIAMS WM, McMANUS MT, JOHNSON RD. Epichloë fungal endophytes and the formation of synthetic symbioses in Hordeeae (=Triticeae) grasses[J]. Journal of Systematics and Evolution, 2014, 52(6): 794-806.
    [38] 李春杰, 王正凤, 陈泰祥, 南志标. 利用禾草内生真菌创制大麦新种质[J]. 科学通报, 2021, 66(20): 2608-2617. LI CJ, WANG ZF, CHEN TX, NAN ZB. Creation of novel barley germplasm using an Epichloë endophyte[J]. Chinese Science Bulletin, 2021, 66(20): 2608-2617(in Chinese).
    [39] HUME DE, STEWART AV, SIMPSON WR, JOHNSON RD. Epichloë fungal endophytes play a fundamental role in New Zealand grasslands[J]. Journal of the Royal Society of New Zealand, 2020, 50(2): 279-298.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王传哲,施宠,何嘉坤,张梦梦,石精涛. 内生真菌Epichloëguerinii对宿主德兰臭草抗病性的影响[J]. 微生物学通报, 2024, 51(7): 2411-2422

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-11
  • 录用日期:2023-11-21
  • 在线发布日期: 2024-07-20
  • 出版日期: 2024-07-20
文章二维码