科微学术

微生物学通报

贝莱斯芽孢杆菌FH-1通过调控特定时空的土壤微生物组促进水稻苗生长
作者:
基金项目:

中国科学院战略先导专项(XDA28030203);天津市自然科学基金(20JCYBJC01220);新疆维吾尔自治区第八师科技领军人才项目(2022CB010-01)


Bacillus velezensis FH-1 promotes rice seedlings growth by regulating specific spatiotemporal soil microbiome
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [60]
  • |
  • 相似文献 [7]
  • | | |
  • 文章评论
    摘要:

    【背景】以植物根际促生菌(plant growth-promoting rhizobacteria,PGPR)为核心的微生物肥料是实现农业可持续发展的重要途径。【目的】以前期获得的一株可显著促进水稻生长的贝莱斯芽孢杆菌(Bacillus velezensis) FH-1为研究对象,运用盆栽试验和高通量测序技术,在时空尺度上系统研究了其在复杂土壤系统中的演变规律及其促进水稻生长的微生物生态学机制。【方法】将贝莱斯芽孢杆菌FH-1接种水稻盆栽,在时间和空间尺度分别采取水稻和根际土壤样品,利用直尺和天平测定水稻的株高和植株干重。提取根际土壤DNA后,利用16S rRNA基因扩增子测序解析水稻根际土壤的微生物群落组成,进一步使用Spearman相关统计分析研究水稻-微生物之间的相关性。【结果】接种后第0天,处理组(F)与对照组(CK)间水稻无显著差异。随着时间推移,F组对水稻的促生效果越来越明显。接种后第20天F组中水稻株高和干重分别比CK组高6.02%和12.52%(P<0.05)。前期(接种后5–10 d)贝莱斯芽孢杆菌FH-1在地下0–3 cm土壤中的定殖丰度高于地下3–6 cm 1.19%–2.64%,通过富集地下0–3 cm土壤中的KineosporiaceaeChitinophagales等物种和延胡索酸呼吸(fumarate respiration)等功能,以及地下3–6 cm土壤中的BacillaceaePhycisphaerae等物种和nitrate ammonification等功能促进水稻生长。后期(接种后15–20 d)贝莱斯芽孢杆菌FH-1在地下0–3 cm土壤中的定殖丰度高于地下3–6 cm 134%–139%,通过富集地下0–3 cm土壤中的BacillusIlumatobacteraceae等物种和xylanolysis功能,及地下3–6 cm土壤中的AcidimicrobiiaMycobacterium等物种和respiration of sulfur compounds功能促进水稻苗早期生长。【结论】在土壤生态系统中,贝莱斯芽孢杆菌FH-1通过调控特定时空位点的微生物群落结构和功能促进水稻苗的早期生长。

    Abstract:

    [Background] Microbial fertilizers prepared with plant growth-promoting rhizobacteria (PGPR) are an important way to achieve sustainable agricultural development. [Objective] To systematically study the distribution of Bacillus velezensis FH-1 capable of promoting rice growth in complex soil systems and the mechanism of the strain in promoting rice growth on a spatial-temporal scale. [Methods] The rice seedlings were inoculated with B. velezensis FH-1, and rice seedling and rhizosphere soil samples in different layers were collected at different time points. The plant height and dry weight of rice seedlings were measured by a ruler and a balance, respectively. After DNA was extracted from the rhizosphere soil, 16S rRNA gene amplicon sequencing was performed to analyze the microbial community composition. Spearman correlation analysis was performed to study the correlations between rice and microorganisms. [Results] On day 0 after inoculation, there was no significant difference between the B. velezensis FH-1 (F) group and the control group (CK). The rice growth-promoting effect of group F became increasingly obvious over time. On day 20 after inoculation, the plant height and dry weight of rice seedlings in group F were 6.02% and 12.52% higher than those in group CK, respectively (P<0.05). During days 5–10 after inoculation, the colonization abundance of B. velezensis FH-1 in the 0–3 cm underground soil layer was 1.19%–2.64% higher than that in the 3–6 cm underground soil layer. During this period, B. velezensis FH-1 promoted rice growth by enriching Kineosporiaceae and Chitinophagales and promoting fumarate respiration in the 0–3 cm underground soil layer and enriching Bacillaceae and Phycisphaerae and enhancing nitrate ammonification in the 3–6 cm underground soil layer. During days 15–20 after inoculation, the colonization abundance of B. velezensis FH-1 in the 0–3 cm underground soil layer was 134%–139% higher than that in the 3–6 cm underground soil layer. During this period, B. velezensis FH-1 promoted rice growth by enriching Bacillus and Ilumatobacteraceae and promoting xylanolysis in the 0–3 cm underground soil layer and enriching Acidimicrobiia and Mycobacterium and boosting respiration of sulfur compounds in the 3–6 cm underground soil layer. [Conclusion] In the soil ecosystem, B. velezensis FH-1 promotes the early growth of rice seedlings by regulating the structure and function of the microbial community in the soil on a spatial-temporal scale.

    参考文献
    [1] 申建波, 白洋, 韦中, 储成才, 袁力行, 张林, 崔振岭, 丛汶峰, 张福锁. 根际生命共同体: 协调资源、环境和粮食安全的学术思路与交叉创新[J]. 土壤学报, 2021, 58(4): 805-813. SHEN JB, BAI Y, WEI Z, CHU CC, YUAN LX, ZHANG L, CUI ZL, CONG WF, ZHANG FS. Rhizobiont: an interdisciplinary innovation and perspective for harmonizing resources, environment, and food security[J]. Acta Pedologica Sinica, 2021, 58(4): 805-813(in Chinese).
    [2] SINGH BK, TRIVEDI P, EGIDI E, MACDONALD CA, DELGADO-BAQUERIZO M. Crop microbiome and sustainable agriculture[J]. Nature Reviews Microbiology, 2020, 18(11): 601-602.
    [3] TIAN ML, ZHENG YY, SUN XL, ZHENG HC. A research on promoting chemical fertiliser reduction for sustainable agriculture purposes: evolutionary game analyses involving 'government, farmers, and consumers’[J]. Ecological Indicators, 2022, 144: 109433.
    [4] PAHALVI HN, RAFIYA L, RASHID S, NISAR B, KAMILI AN. Chemical fertilizers and their impact on soil health[M]//Microbiota and Biofertilizers, Vol 2. Cham: Springer International Publishing, 2021: 1-20.
    [5] BAWEJA P, KUMAR S, KUMAR G. Fertilizers and pesticides: their impact on soil health and environment[M]//Soil Biology. Cham: Springer International Publishing, 2020: 265-285.
    [6] CABALLERO-MELLADO J, ONOFRE-LEMUS J, SANTOS PED L, MARTÍNEZ-AGUILAR L. The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation[J]. Applied and Environmental Microbiology, 2007, 73(16): 5308-5319.
    [7] CALVO P, NELSON L, KLOEPPER JW. Agricultural uses of plant biostimulants[J]. Plant and Soil, 2014, 383(1): 3-41.
    [8] 王素英, 陶光灿, 谢光辉, 沈德龙, 李俊, 路宝庆. 我国微生物肥料的应用研究进展[J]. 中国农业大学学报, 2003, 8(1): 14-18. WANG SY, TAO GC, XIE GH, SHEN DL, LI J, LU BQ. A review of effects of biofertilizers on crop yield and quality[J]. Journal of China Agricultural University, 2003, 8(1): 14-18(in Chinese).
    [9] SAMMAURIA R, KUMAWAT S, KUMAWAT P, SINGH J, JATWA TK. Microbial inoculants: potential tool for sustainability of agricultural production systems[J]. Archives of Microbiology, 2020, 202(4): 677-693.
    [10] BACKER R, ROKEM JS, ILANGUMARAN G, LAMONT J, PRASLICKOVA D, RICCI E, SUBRAMANIAN S, SMITH DL. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture[J]. Frontiers in Plant Science, 2018, 9: 1473.
    [11] SINGH M, SINGH D, GUPTA A, DEO PANDEY K, SINGH PK, KUMAR A. Plant growth promoting rhizobacteria[M]//PGPR Amelioration in Sustainable Agriculture. Amsterdam: Elsevier, 2019: 41-66.
    [12] SUN XL, XU ZH, XIE JY, HESSELBERG-THOMSEN V, TAN TM, ZHENG DY, STRUBE ML, DRAGOŠ A, SHEN QR, ZHANG RF, KOVÁCS ÁT. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions[J]. The ISME Journal, 2022, 16(3): 774-787.
    [13] KANG YJ, SHEN M, WANG HL, ZHAO QX. A possible mechanism of action of plant growth-promoting rhizobacteria (PGPR) strain Bacillus pumilus WP8 via regulation of soil bacterial community structure[J]. The Journal of General and Applied Microbiology, 2013, 59(4): 267-277.
    [14] PU JY, LI ZY, TANG HQ, ZHOU GP, WEI CH, DONG WB, JIN ZJ, HE TG. Response of soil microbial communities and rice yield to nitrogen reduction with green manure application in Karst paddy areas[J]. Frontiers in Microbiology, 2023, 13: 1070876.
    [15] LAVAKUSH, YADAV J, VERMA J P, JAISWAL DK, KUMAR A. Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa)[J]. Ecological Engineering, 2014, 62: 123-128.
    [16] WEINAND T, EL-HASAN A, ASCH F. Role of Bacillus spp. plant growth promoting properties in mitigating biotic and abiotic stresses in lowland rice (Oryza sativa L.)[J]. Microorganisms, 2023, 11(9): 2327.
    [17] 宋维民, 王丽艳, 郭永霞, 孙强, 吕艳东, 荆瑞勇, 王海泽. 秸秆还田条件下固氮蓝藻复合菌剂与促生细菌SM13对水稻产量及稻米品质的影响[J]. 南方农业学报, 2021, 52(3): 762-768. SONG WM, WANG LY, GUO YX, SUN Q, LYU YD, JING RY, WANG HZ. Effects of nitrogen-fixing cyanobacteria complex microbial inoculant and growth-promoting bacteria SM13 on yield and quality of rice with straw turnover[J]. Journal of Southern Agriculture, 2021, 52(3): 762-768(in Chinese).
    [18] BAO ZH, SASAKI K, OKUBO T, IKEDA S, ANDA M, HANZAWA E, KAKIZAKI K, SATO T, MITSUI H, MINAMISAWA K. Impact of Azospirillum sp. B510 inoculation on rice-associated bacterial communities in a paddy field[J]. Microbes and Environments, 2013, 28(4): 487-490.
    [19] ASILOGLU R, SHIROISHI K, SUZUKI K, TURGAY OC, MURASE J, HARADA N. Protist-enhanced survival of a plant growth promoting rhizobacteria, Azospirillum sp. B510, and the growth of rice (Oryza sativa L.) plants[J]. Applied Soil Ecology, 2020, 154: 103599.
    [20] 涂保华, 符菁, 赵远, 赵利华, 肖娴, 张晟, 卫国华, 吉昕华. 基于光合菌剂的复合微生物菌肥对土壤速效养分含量及微生物群落结构多样性的影响[J]. 西南农业学报, 2019, 32(12): 2878-2884. TU BH, FU J, ZHAO Y, ZHAO LH, XIAO X, ZHANG S, WEI GH, JI XH. Effects of photosynthetic fungicide based compound microbial fertilizer on soil available nutrient content and microbial community structure diversity[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(12): 2878-2884(in Chinese).
    [21] ALOO BN, TRIPATHI V, MAKUMBA BA, MBEGA ER. Plant growth-promoting rhizobacterial biofertilizers for crop production: the past, present, and future[J]. Frontiers in Plant Science, 2022, 13: 1002448.
    [22] BASU A, PRASAD P, DAS SN, KALAM S, SAYYED RZ, REDDY MS, EL ENSHASY H. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects[J]. Sustainability, 2021, 13(3): 1140.
    [23] 白洋, 钱景美, 周俭民, 钱韦. 农作物微生物组: 跨越转化临界点的现代生物技术[J]. 中国科学院院刊, 2017, 32(3): 260-265. BAI Y, QIAN JM, ZHOU JIM, QIAN W. Cropmicrobiome: breakthrough technology for agriculture[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(3): 260-265(in Chinese).
    [24] WALTZ E. A new crop of microbe startups raises big bucks, takes on the establishment[J]. Nature Biotechnology, 2017, 35(12): 1120-1122.
    [25] O’CALLAGHAN M. Microbial inoculation of seed for improved crop performance: issues and opportunities[J]. Applied Microbiology and Biotechnology, 2016, 100(13): 5729-5746.
    [26] AWASTHI A. Field-specific microbial consortia are feasible: a response to Kaminsky et al.[J]. Trends in Biotechnology, 2019, 37(6): 569-572.
    [27] MITTER B, BRADER G, PFAFFENBICHLER N, SESSITSCH A. Next generation microbiome applications for crop production: limitations and the need of knowledge-based solutions[J]. Current Opinion in Microbiology, 2019, 49: 59-65.
    [28] BUSBY PE, SOMAN C, WAGNER MR, FRIESEN ML, KREMER J, BENNETT A, MORSY M, EISEN JA, LEACH JE, DANGL JL. Research priorities for harnessing plant microbiomes in sustainable agriculture[J]. PLoS Biology, 2017, 15(3): e2001793.
    [29] QIN YX, SHANG QM, ZHANG Y, LI PL, CHAI YR. Bacillus amyloliquefaciens L-S60 reforms the rhizosphere bacterial community and improves growth conditions in cucumber plug seedling[J]. Frontiers in Microbiology, 2017, 8: 2620.
    [30] AMBROSINI A, de SOUZA R, PASSAGLIA LMP. Ecological role of bacterial inoculants and their potential impact on soil microbial diversity[J]. Plant and Soil, 2016, 400(1/2): 193-207.
    [31] TRABELSI D, MHAMDI R. Microbial inoculants and their impact on soil microbial communities: a review[J]. BioMed Research International, 2013, 2013: 863240.
    [32] MENDES R, KRUIJT M, de BRUIJN I, DEKKERS E, van der VOORT M, SCHNEIDER JHM, PICENO YM, DeSANTIS TZ, ANDERSEN GL, BAKKER PAHM, RAAIJMAKERS JM. Deciphering the rhizosphere microbiome for disease-suppressive bacteria[J]. Science, 2011, 332(6033): 1097-1100.
    [33] MENDES R, RAAIJMAKERS JM. Cross-Kingdom similarities in microbiome functions[J]. The ISME Journal, 2015, 9(9): 1905-1907.
    [34] RODRIGUEZ PA, ROTHBALLER M, CHOWDHURY SP, NUSSBAUMER T, GUTJAHR C, FALTER- BRAUN P. Systems biology of plant-microbiome interactions[J]. Molecular Plant, 2019, 12(6): 804-821.
    [35] SANTOS LF, OLIVARES FL. Plant microbiome structure and benefits for sustainable agriculture[J]. Current Plant Biology, 2021, 26: 100198.
    [36] TRIVEDI P, LEACH JE, TRINGE SG, SA TM, SINGH BK. Plant-microbiome interactions: from community assembly to plant health[J]. Nature Reviews Microbiology, 2020, 18(11): 607-621.
    [37] WANG JJ, XU S, YANG R, ZHAO W, ZHU D, ZHANG XX, HUANG ZY. Bacillus amyloliquefaciens FH-1 significantly affects cucumber seedlings and the rhizosphere bacterial community but not soil[J]. Scientific Reports, 2021, 11: 12055.
    [38] WANG JJ, ZHAO SQ, XU S, ZHAO W, ZHANG XX, LEI Y, ZHAI HH, HUANG ZY. Co-inoculation of antagonistic Bacillus velezensis FH-1 and Brevundimonas diminuta NYM3 promotes rice growth by regulating the structure and nitrification function of rhizosphere microbiome[J]. Frontiers in Microbiology, 2023, 14: 1101773.
    [39] ROBERT FM, SCHMIDT EL. Population changes and persistence of Rhizobium phaseoli in soil and rhizospheres[J]. Applied and Environmental Microbiology, 1983, 45(2): 550-556.
    [40] BASHAN Y, PUENTE ME, RODRIGUEZ-MENDOZA MN, TOLEDO G, HOLGUIN G, FERRERA- CERRATO R, PEDRIN S. Survival of Azospirillum brasilense in the bulk soil and rhizosphere of 23 soil types[J]. Applied and Environmental Microbiology, 1995, 61(5): 1938-1945.
    [41] FISCHER SE, JOFRÉ EC, CORDERO PV, GUTIÉRREZ MAÑERO FJ, MORI GB. Survival of native Pseudomonas in soil and wheat rhizosphere and antagonist activity against plant pathogenic fungi[J]. Antonie Van Leeuwenhoek, 2010, 97(3): 241-251.
    [42] JÄDERLUND L, HELLMAN M, SUNDH I, BAILEY MJ, JANSSON JK. Use of a novel nonantibiotic triple marker gene cassette to monitor high survival of Pseudomonas fluorescens SBW25 on winter wheat in the field[J]. FEMS Microbiology Ecology, 2008, 63(2): 156-168.
    [43] VON FELTEN A, DÉFAGO G, MAURHOFER M. Quantification of Pseudomonas fluorescens strains F113, CHA0 and Pf153 in the rhizosphere of maize by strain-specific real-time PCR unaffected by the variability of DNA extraction efficiency[J]. Journal of Microbiological Methods, 2010, 81(2): 108-115.
    [44] KEMP JS, PATERSON E, GAMMACK SM, CRESSER MS, KILLHAM K. Leaching of genetically modified Pseudomonas fluorescens through organic soils: influence of temperature, soil pH, and roots[J]. Biology and Fertility of Soils, 1992, 13(4): 218-224.
    [45] TROXLER J, SVERCEL M, NATSCH A, ZALA M, KEEL C, MOËNNE-LOCCOZ Y, DÉFAGO G. Persistence of a biocontrol Pseudomonas inoculant as high populations of culturable and non-culturable cells in 200-cm-deep soil profiles[J]. Soil Biology and Biochemistry, 2012, 44(1): 122-129.
    [46] EDWARDS J, JOHNSON C, SANTOS-MEDELLÍN C, LURIE E, PODISHETTY NK, BHATNAGAR S, EISEN JA, SUNDARESAN V. Structure, variation, and assembly of the root-associated microbiomes of rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8): E911-920.
    [47] CORNEO PE, PELLEGRINI A, CAPPELLIN L, RONCADOR M, CHIERICI M, GESSLER C, PERTOT I. Microbial community structure in vineyard soils across altitudinal gradients and in different seasons[J]. FEMS Microbiology Ecology, 2013, 84(3): 588-602.
    [48] VACHERON J, DESBROSSES G, BOUFFAUD ML, TOURAINE B, MOËNNE-LOCCOZ Y, MULLER D, LEGENDRE L, WISNIEWSKI-DYÉ F, PRIGENT- COMBARET C. Plant growth-promoting rhizobacteria and root system functioning[J]. Frontiers in Plant Science, 2013, 4: 356.
    [49] KONG Z, WU Z, GLICK B R, HE S, HUANG C, WU L. Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal-contaminated soils[J]. Ecotoxicology and Environmental Safety, 2019, 183: 109504.
    [50] HE T, XU ZM, WANG JF, ZHANG K, WANG FP, LI WL, TIAN P, LI QS. Inoculation of Escherichia coli enriched the key functional bacteria that intensified cadmium accumulation by halophyte Suaeda salsa in saline soils[J]. Journal of Hazardous Materials, 2023, 458: 131922.
    [51] CHEN C, WANG M, ZHU JZ, TANG YW, ZHANG HC, ZHAO QM, JING MY, CHEN YH, XU XH, JIANG JD, SHEN ZG. Long-term effect of epigenetic modification in plant-microbe interactions: modification of DNA methylation induced by plant growth-promoting bacteria mediates promotion process[J]. Microbiome, 2022, 10(1): 1-19.
    [52] FERRAREZI JA, de ALMEIDA CARVALHO- ESTRADA P, BATISTA BD, ANICETO RM, TSCHOEKE BAP, de MAIA ANDRADE PA, de MOURA LOPES B, LETICIA BONATELLI M, ODISI EJ, AZEVEDO JL, QUECINE MC. Effects of inoculation with plant growth-promoting rhizobacteria from the Brazilian Amazon on the bacterial community associated with maize in field[J]. Applied Soil Ecology, 2022, 170: 104297.
    [53] FINKEL OM, CASTRILLO G, HERRERA PAREDES S, SALAS GONZÁLEZ I, DANGL JL. Understanding and exploiting plant beneficial microbes[J]. Current Opinion in Plant Biology, 2017, 38: 155-163.
    [54] STANIER RY, PALLERONI NJ, DOUDOROFF M. The aerobic pseudomonads a taxonomic study[J]. Journal of General Microbiology, 1966, 43(2): 159-271.
    [55] Stéphane C, Christophe C, Angela S. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization[J]. Soil Biology and Biochemistry, 2010, 42(5): 669-678.
    [56] BAI Y, PAN B, CHARLES T C, SMITH DL. Co-inoculation dose and root zone temperature for plant growth promoting rhizobacteria on soybean (Glycine max (L.) Merr) grown in soil-less media[J]. Soil Biology and Biochemistry, 2002, 34(12): 1953-1957.
    [57] HE T, XU ZJ, WANG JF, WANG FP, ZHOU XF, WANG LL, LI QS. Improving cadmium accumulation by Solanum nigrum L. via regulating rhizobacterial community and metabolic function with phosphate-solubilizing bacteria colonization[J]. Chemosphere, 2022, 287: 132209.
    [58] 李晴晴, 徐松, 赵维, 杨榕, 赵思崎, 黄志勇, 王敬敬. 根际微生物组介导的解淀粉芽孢杆菌FH-1对水稻的促生机制[J]. 微生物学报, 2019, 59(12): 2410-2426. LI QQ, XU S, ZHAO W, YANG R, ZHAO SQ, HUANG ZY, WANG JJ. Rhizosphere microbiome mediated growth-promoting mechanisms of Bacillus amyloliquefaciens FH-1 on rice[J]. Acta Microbiologica Sinica, 2019, 59(12): 2410-2426(in Chinese).
    [59] KONG ZY, LIU HG. Modification of rhizosphere microbial communities: a possible mechanism of plant growth promoting rhizobacteria enhancing plant growth and fitness[J]. Frontiers in Plant Science, 2022, 13: 920813.
    [60] CHEN L, LI KK, SHANG JY, WU Y, CHEN T, WANYAN YQ, WANG ET, TIAN CF, CHEN WF, CHEN WX, MI GH, SUI XH. Plant growth-promoting bacteria improve maize growth through reshaping the rhizobacterial community in low-nitrogen and low-phosphorus soil[J]. Biology and Fertility of Soils, 2021, 57(8): 1075-1088.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

代诗佳,王敬敬,魏茉,庞琰,杨杨,许世武,黄志勇. 贝莱斯芽孢杆菌FH-1通过调控特定时空的土壤微生物组促进水稻苗生长[J]. 微生物学通报, 2024, 51(7): 2381-2410

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-03
  • 录用日期:2023-12-08
  • 在线发布日期: 2024-07-20
  • 出版日期: 2024-07-20
文章二维码