科微学术

微生物学通报

低温纤维素降解细菌Duganella sp.的分离及降解能力解析
作者:
基金项目:

国家自然科学基金区域创新发展联合基金(U22A20444);国家重点研发计划(2023YFD1500501);中央高校基本科研业务费专项基金(2572023CT08)


Isolation of a Duganella sp. of degrading cellulose bacterium at low temperatures and analysis of its degradation capacity
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】低温是寒区秸秆还田后微生物降解的主要限制因素之一。【目的】获得低温纤维素降解细菌以提高寒区秸秆资源化利用率低的问题。【方法】取冬季土壤样品进行富集,以羧甲基纤维素钠(sodium carboxymethyl cellulose, CMC-Na)为唯一碳源,采用稀释涂布等方法分离纯培养菌株,通过单因素试验及正交试验对菌株产酶条件进行优化。【结果】获得一株15 ℃条件下降解纤维素的细菌,初步归类为杜擀氏菌属(Duganella)。其最佳产酶条件为:培养温度15 ℃,初始pH值7.0,装液量50/100 mL,接种量12.5%,此时的CMC酶活最高为398.2 U/mL,比优化前提高了40.45%。菌株在最佳培养条件下对滤纸、水稻秸秆和玉米秸秆的降解率分别为19.24%、9.48%和7.30%。【结论】本研究为寒区秸秆降解微生物资源提供了新的菌种资源,同时为后续低温纤维素降解菌株的研究提供了数据参考。

    Abstract:

    [Background] Low temperatures are one of the main factors limiting microbial degradation of straw returned to the field in cold regions. [Objective] To obtain the bacterial strains capable of degrading cellulose at low temperatures to improve the straw reutilization in cold regions. [Methods] The soil samples were collected in winter for strain enrichment with sodium carboxymethyl cellulose (CMC-Na) as the sole carbon source. The pure culture of the strain was obtained by the dilution-plate coating method, and the enzyme production conditions of the strain were optimized by single factor and orthogonal tests. [Results] A cellulose-degrading strain was obtained at 15 ℃ and identified as Duganella sp. The optimal enzyme production conditions of the strain were incubation with the liquid loading volume of 50/100 mL and inoculum volume of 12.5% at 15 ℃ and initial pH 7.0, under which the highest CMC enzyme activity was 398.2 U/mL, 40.45% higher than that before optimization. The degradation rates of filter paper, rice straw, and maize straw by the strain were 19.24%, 9.48%, and 7.30%, respectively, under optimal culture conditions. [Conclusion] This study provides new strain resources for straw degrading microbial resources in cold regions, as well as data reference for subsequent research on low temperature cellulose-degrading strains.

    参考文献
    [1] MENG LX, XU CX, WU FL. Microbial co-occurrence networks driven by low-abundance microbial taxa during composting dominate lignocellulose degradation[J]. Science of the Total Environment, 2022, 845: 157197.
    [2] 石祖梁, 贾涛, 王亚静, 王久臣, 孙仁华, 王飞, 李想, 毕于运. 我国农作物秸秆综合利用现状及焚烧碳排放估算[J]. 中国农业资源与区划, 2017, 38(9): 32-37.SHI ZL, JIA T, WANG YJ, WANG JC, SUN RH, WANG F, LI X, BI YY. Comprehensive utilization status of crop straw and estimation of carbon from burning in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(9): 32-37 (in Chinese).
    [3] GONG M, WANG Y, BAO DP, JIANG S, CHEN HY, SHANG JJ, WANG XJ, YU HH, ZOU G. Improving cold-adaptability of mesophilic cellulase complex with a novel mushroom cellobiohydrolase for efficient low-temperature ensiling[J]. Bioresource Technology, 2023, 376: 128888.
    [4] XU CF, SU X, WANG JH, ZHANG FZ, SHEN GN, YUAN Y, YAN L, TANG HZ, SONG FQ, WANG WD. Characteristics and functional bacteria in a microbial consortium for rice straw lignin-degrading[J]. Bioresource Technology, 2021, 331: 125066.
    [5] DHAULANIYA AS, BALAN B, KUMAR M, AGRAWAL PK, SINGH DK. Cold survival strategies for bacteria, recent advancement and potential industrial applications[J]. Archives of Microbiology, 2019, 201(1): 1-16.
    [6] 孟建宇, 丁雪敏. 低温嗜碱性纤维素降解细菌的分离与鉴定[J]. 中国饲料, 2020(11): 31-33.MENG JY, DING XM. Isolation and identification of cold-adapted basophilia cellulose-degrading bacteria[J]. China Feed, 2020(11): 31-33 (in Chinese).
    [7] 单建荣, 全鑫, 朱用哲, 邢宇, 张旭, 王宏燕, 范金霞. 一株低温纤维素降解菌的筛选与产酶条件优化[J]. 生态学杂志, 2021, 40(4): 1128-1136.SHAN JR, QUAN X, ZHU YZ, XING Y, ZHANG X, WANG HY, FAN JX. Screening of a low-temperature cellulose-degrading bacterium and optimization of cellulase production conditions[J]. Chinese Journal of Ecology, 2021, 40(4): 1128-1136 (in Chinese).
    [8] THAKUR V, KUMAR V, KUMAR S, SINGH D. Diverse culturable bacterial communities with cellulolytic potential revealed from pristine habitat in Indian trans-Himalaya[J]. Canadian Journal of Microbiology, 2018, 64(11): 798-808.
    [9] 张悦, 季静, 关春峰, 金超, 李倩, 闫豹, 王罡, 王昱蓉. 秸秆纤维素降解菌的筛选及其产酶特性研究[J]. 纤维素科学与技术, 2018, 26(4): 28-38.ZHANG Y, JI J, GUAN CF, JIN C, LI Q, YAN B, WANG G, WANG YR. Screening of straw-degrading strains and their enzyme-producing conditions[J]. Journal of Cellulose Science and Technology, 2018, 26(4): 28-38 (in Chinese).
    [10] TRIPATHI N, SAPRA A. Gram staining[M]. Treasure Island (FL): StatPearls Publishing, 2023.
    [11] 沈萍, 陈向东. 微生物学实验[M]. 北京: 高等教育出版社, 2018.SHEN P, CHEN XD. Experiments in Microbiology[M]. Beijing: Higher Education Press, 2018 (in Chinese).
    [12] 东秀珠, 周宇光, 朱红慧, 蔡曼, 崔恒林, 戴欣, 高喜燕, 姜成英, 李爱华, 梁宗林, 刘洪灿, 刘庆, 刘阳, 刘志培, 宋磊, 辛玉华. 常见细菌与古菌系统分类鉴定手册[M]. 北京: 科学出版社, 2023.DONG XZ, ZHOU YG, ZHU HH, CAI M, CUI HL, DAI X, GAO XY, JIANG CY, LI AH, LIANG ZC, LIU HC, LIU Q, LIU Y, LIU ZP, SONG L, XIN YH. Handbook of Systematic Classification and Identification of Common Bacteria and Archaea[M]. Beijing: Science Press, 2023 (in Chinese).
    [13] Buchanan RE, Gibbons NE. 伯杰细菌鉴定手册[M]. 中国科学院微生物研究所, 译. 8版. 北京: 科学出版社, 1984
    Buchanan RE, Gibbons NE. Bergey’s Manual of Determinative Bacteriology[M]. translated by Institute of Microbiology, Chinese Academy of Sciences, 8th ed. Beijing: Science Press, 1984 (in Chinese).
    [14] 王伟东, 王小芬, 刘长莉, 李玉花, 吕育财, 崔宗均. 木质纤维素分解菌复合系WSC-6分解稻秆过程中的产物及pH动态[J]. 环境科学, 2008, 29(1): 219-224.WANG WD, WANG XF, LIU CL, LI YH, LÜ YC, CUI ZJ. Productions analyses and pH dynamics during rice straw degradation by the lignocellulose degradation bacteria system WSC-6[J]. Environmental Science, 2008, 29(1): 219-224 (in Chinese).
    [15] JANG J, ANDERSON EL, VENTEREA RT, SADOWSKY MJ, ROSEN CJ, FEYEREISEN GW, ISHII S. Denitrifying bacteria active in woodchip bioreactors at low-temperature conditions[J]. Frontiers in Microbiology, 2019, 10: 635.
    [16] MA LL, WANG X, ZHOU JW, LÜ X. Degradation of switchgrass by Bacillus subtilis 1AJ3 and expression of a beta-glycoside hydrolase[J]. Frontiers in Microbiology, 2022, 13: 922371.
    [17] DHAR H, SWARNKAR MK, GULATI A, SINGH AK, KASANA RC. Draft genome sequence of a cellulase-producing psychrotrophic Paenibacillus strain, IHB B3415, isolated from the cold environment of the Western Himalayas, India[J]. Genome Announcements, 2015, 3(1): e01581-e01514.
    [18] 李春艳, 于琦, 冯露, 成毅, 成小松, 王雪, 张平根. 低温纤维素降解菌分离鉴定及产酶条件优化[J]. 东北农业大学学报, 2015, 46(10): 74-81.LI CY, YU Q, FENG L, CHENG Y, CHENG XS, WANG X, ZHANG PG. Isolation and identification of low-temperature cellulose-degrading bacteria and optimization of enzyme production conditions[J]. Journal of Northeast Agricultural University, 2015, 46(10): 74-81 (in Chinese).
    [19] MORITA RY. Psychrophilic bacteria[J]. Bacteriological Reviews, 1975, 39(2): 144-167.
    [20] 王敬红, 李灵灵, 申贵男, 袁媛, 曹迪, 高亚梅, 晏磊, 王伟东. 木质素降解真菌菌群LDFC产酶条件优化[J]. 黑龙江八一农垦大学学报, 2022, 34(2): 75-80, 115.WANG JH, LI LL, SHEN GN, YUAN Y, CAO D, GAO YM, YAN L, WANG WD. Optimization of enzyme-producing conditions of lignin-degrading fungal flora LDFC[J]. Journal of Heilongjiang Bayi Agricultural University, 2022, 34(2): 75-80, 115 (in Chinese).
    [21] 孟建宇, 陈勿力吉玛, 郭慧琴, 冯福应, 陈玉萍. 常温和低温纤维素降解菌的分离及其降解特性[J]. 农业生物技术学报, 2021, 29(1): 73-84.MENG JY, CHEN WLJM, GUO HQ, FENG FY, CHEN YP. Isolation and degradation characteristics of cellulose-degradation bacteria at room and low temperature[J]. Journal of Agricultural Biotechnology, 2021, 29(1): 73-84 (in Chinese).
    [22] WANG Y, CAI JL, LI DM. Efficient degradation of rice straw through a novel psychrotolerant Bacillus cereus at low temperature[J]. Journal of the Science of Food and Agriculture, 2023, 103(3): 1394-1403.
    [23] ZHANG SN, HAN SC, GAO JL, YU XF, HU SP. Low-temperature corn straw-degrading bacterial agent and moisture effects on indigenous microbes[J]. Applied Microbiology and Biotechnology, 2023, 107(16): 5241-5255.
    [24] 赵文霞, 杨朝旭, 刘帅, 任爱玲. 典型农作物秸秆组成及燃烧动力学分析[J]. 农业环境科学学报, 2019, 38(4): 921-927.ZHAO WX, YANG CX, LIU S, REN AL. Composition and combustion dynamics analysis of typical crop straws[J]. Journal of Agro-Environment Science, 2019, 38(4): 921-927 (in Chinese).
    [25] BOURGAULT R, MATSCHI S, VASQUEZ M, QIAO PF, SONNTAG A, CHARLEBOIS C, MOHAMMADI M, SCANLON MJ, SMITH LG, MOLINA I. Constructing functional cuticles: analysis of relationships between cuticle lipid composition, ultrastructure and water barrier function in developing adult maize leaves[J]. Annals of Botany, 2020, 125(1): 79-91.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈昭,王敬红,邓常宇,邹世杰,范寒雪,魏丹,孙宇峰,王伟东. 低温纤维素降解细菌Duganella sp.的分离及降解能力解析[J]. 微生物学通报, 2024, 51(6): 2158-2169

复制
分享
文章指标
  • 点击次数:223
  • 下载次数: 769
  • HTML阅读次数: 413
  • 引用次数: 0
历史
  • 收稿日期:2023-12-31
  • 录用日期:2024-01-22
  • 在线发布日期: 2024-06-07
  • 出版日期: 2024-06-20
文章二维码