科微学术

微生物学通报

三星堆象牙埋藏环境可培养厌氧微生物分离及多样性分析
作者:
基金项目:

国家重点研发计划(2022YFF0904000)


Isolation and diversity of culturable anaerobes from the ivory burial environment of Sanxingdui
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】埋藏环境与文物劣化有着密切的关系,微生物被认为是导致文物劣化和消失的重要原因之一。埋藏环境下的三星堆象牙处于深埋、缺氧的条件,但目前对该环境下的厌氧菌缺乏必要的了解。【目的】以三星堆象牙埋藏层土壤为研究对象,探究埋藏环境可培养厌氧微生物多样性和影响微生物分布的因素,为深入研究厌氧微生物产酸、产蛋白酶等功能及象牙劣化机理提供菌株资源和理论参考。【方法】利用厌氧工作站,采用3种厌氧菌分离培养基分离三星堆象牙埋藏层土壤中的厌氧微生物,分析不同培养基对厌氧菌的分离效果,对分离菌株进行16S rRNA基因系统发育分析,揭示三星堆不同象牙埋藏环境中可培养厌氧微生物的多样性,并采用Mantel检验研究影响三星堆象牙埋藏环境可培养厌氧微生物分布的环境因子。【结果】从三星堆象牙埋藏层土壤中共分离获得61株厌氧菌,16S rRNA基因测序分析结果显示分离菌株均属于发酵厌氧微生物,分属于梭菌科(Clostridiaceae)与消化链球菌科(Peptostreptococcaceae)共2个科,梭菌属(Clostridium)、土生孢杆菌属(Terrisporobacter)、哈撒韦氏菌属(Hathewaya)、Haloimpatien共4个属,Clostridium cibarium、拜氏梭菌(Clostridium beijerinckii)、大梭菌(Clostridium magnum)、硝醛酚梭菌(Clostridium nitrophenolicum)、Clostridium kogasense、肠梭菌(Clostridium intestinale)、生孢梭菌(Clostridium sporogenes)、Clostridium sp. (A4d)、马永贝土生孢杆菌(Terrisporobacter mayombei)、Hathewaya massiliensisHaloimpatiens massiliensis共11个种;所采用的3种分离培养基中,强化梭菌培养基分离获得的发酵厌氧菌数量和种类最多,但其他2种培养基也表现出独特的分离效果;Mantel检验结果表明,可培养发酵厌氧菌种群分布特征与Cu、Pb的含量呈显著正相关。【结论】三星堆象牙埋藏环境可培养发酵厌氧微生物的分布存在一定差异,K8象牙埋藏层土壤中可培养发酵厌氧菌丰富度与多样性均最高,多种培养基综合利用有利于分离出更为丰富多样的微生物类群,Cu、Pb与有机质含量是影响三星堆象牙埋藏层土壤可培养发酵厌氧菌种群分布的关键因素。

    Abstract:

    [Background] The deterioration of cultural relics in burial environments is closely associated with microorganisms that are recognized as one of the major contributors to the degradation and disappearance of cultural relics. The knowledge is limited regarding anaerobes in the anoxic conditions deep at the Sanxingdui site. [Objective] To investigate the culturable anaerobe diversity in the ivory burial layer of Sanxingdui, explore the factors influencing the distribution of culturable anaerobes, and provide strain resources and theoretical reference for further research on the organic acid and protease production of the anaerobes and the mechanism of ivory degradation. [Methods] Anaerobes were isolated from the ivory burial layer of Sanxingdui using an anaerobic workstation and three isolation media, and the effectiveness of different media for isolating anaerobes was analyzed. The phylogenetic analysis based on 16S rRNA gene sequences was performed to reveal the diversity of culturable anaerobes. Furthermore, the Mantel test was carried out to study the environmental factors influencing the distribution of culturable anaerobes. [Results] A total of 61 strains of anaerobes were isolated from the ivory burial layer of Sanxingdui. Based on the 16S rRNA gene sequences, the strains were assigned into Clostridium, Terrisporobacter, Hathewaya, and Haloimpatiens belonging to Clostridiaceae and Peptostreptococcaceae. Eleven species were identified: Clostridium cibarium, C. beijerinckii, C. magnum, C. nitrophenolicum, C. kogasense, C. intestinale, C. sporogenes, Clostridium sp. (A4d), Terrisporobacter mayombei, Hathewaya massiliensis, and Haloimpatiens massiliensis. Among the three isolation media used, the reinforced Clostridium medium yielded the highest number and the most species of fermentative anaerobes, and the other two media also showed unique isolation effects. Mantel test results indicated significant positive correlations between the distribution characteristics of culturable fermentative anaerobes and the content of Cu and Pb. [Conclusion] The culturable fermentative anaerobes present varied diversity in the ivory burial environment of Sanxingdui, with the highest richness and diversity in pit K8. Multiple isolation media facilitated the isolation of diverse microbial groups. Cu, Pb, and organic matter are the key factors influencing the distribution of culturable fermentative anaerobes in the ivory burial layer of Sanxingdui.

    参考文献
    [1] 于孟洲, 李潇檬. 也谈三星堆遗址的“祭祀遗存”[J]. 四川文物, 2022(6): 98-110.YU MZ, LI XM. Discussing the “sacrificial remains” of the Sanxingdui site[J]. Sichuan Cultural Relics, 2022(6): 98-110 (in Chinese).
    [2] 汪灵. 中国的古象牙文物及其保护意义[J]. 中国文物科学研究, 2007(2): 58-61, 85.WANG L. Chinese ancient ivory cultural relics and their protection significance[J]. China Cultural Heritage Scientific Research, 2007(2): 58-61, 85 (in Chinese).
    [3] 徐秀丽. 6座祭祀坑出土文物近13 000件祭祀坑埋藏年代确定[N]. 中国文物报, 2022-06-17(1).XU XL. Excavation from six sacrificial pits yielded nearly 13,000 cultural relics, and the burial period of the sacrificial pits has been determined[N]. Chinese Cultural Relics Newspaper, 2022-06-17 (in Chinese).
    [4] SIMPSON P. Studies on the degradation of horn, antler and ivory at archaeological sites[D]. Portsmouth: University of Portsmouth, 2011.
    [5] 郭宏. 文物保存环境概论[M]. 北京: 科学出版社, 2001.GUO H. Introduction to the Conservation Environment of Cultural Relics[M]. Beijing: Science Press, 2001 (in Chinese).
    [6] 旦辉, 汪灵, 王冲, 常嗣和, 樊华. 成都金沙出土古象牙文物的微生物特征及其防治方法探讨[J]. 考古与文物, 2009(5): 100-102.DAN H, WANG L, WANG C, CAHNG SH, FANG H. Microbial characteristics and prevention methods of ancient ivory artifacts unearthed in Jinsha, Chengdu[J]. Archaeology and Cultural Relics, 2009(5): 100-102 (in Chinese).
    [7] XU J, WEI Y, JIA H, XIAO L, GONG D. A new perspective on studying burial environment before archaeological excavation: analyzing bacterial community distribution by high-throughput sequencing[J]. Scientific Reports, 2017, 7(1): 41691.
    [8] KOKKO ME, MäKINEN AE, PUHAKKA JA. Anaerobes in bioelectrochemical systems[J]. Advances in Biochemical Engineering/Biotechnology, 2016, 156: 263-292.
    [9] SONG K, YEERKEN S, LI L, SUN J, WANG Q. Improving post-anaerobic digestion of full-scale anaerobic digestate using free ammonia treatment[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 7171-7176.
    [10] 谢振斌, 唐飞, 王冲, 刘建成, 李军, 肖庆, 冉宏林, 孙群, 邓宏. 基于环境监测的三星堆遗址祭祀坑考古现场预防性保护[J]. 文物保护与考古科学, 2023, 35(3): 71-79.XIE ZB, TANG F, WANG C, LIU JC, LI J, XIAO Q, RAN HL, SUN Q, DENG H. Preventive conservation of the sacrificial pit at Sanxingdui site based on environmental monitoring[J]. Journal of Cultural Heritage and Archaeology Science, 2023, 35(3): 71-79 (in Chinese).
    [11] 何砚秋, 蒋璐蔓, 陈俊橙, 王宁, 肖嶙, 王冲, 李思凡, 曲靖文, 程乾, 石雪雪, 谭玉兰, 曹雪笛, 张紫薇, 邹立扣, 赵珂. 三星堆出土古象牙表面病害微生物分离鉴定及抑菌剂效果评价[J]. 应用与环境生物学报, 2022, 28(3): 543-552.HE YQ, JTANG LM, CHEN JC, WANG N, XIAO L, WANG C, LI SF, QU JW, CHEN Q, SHI XX, TAN YL, CAO XD, ZHANG ZW, ZOU LK, ZHAO K. Isolation and identification the microbe diseases breeding on the surface of ancient ivory unearthed from Sanxingdui ruins and evaluation of antimicrobial effect of bacteriostatic agent[J]. Chin J Appl Environ Biol, 2022, 28(3): 543-552 (in Chinese).
    [12] XIAN WD, HU CJ, LI WJ. Methods for isolation and cultivation of thermophiles in hot springs[J]. Bio-101, 2021: e2003741.
    [13] 丁雪松. 传统白酒窖泥中厌氧菌的分离鉴定及功能菌的筛选[D]. 哈尔滨: 黑龙江大学硕士学位论文, 2012.DING XS. Isolation, identification, and screening of anaerobic bacteria in traditional baijiu cellar sediment, as well as selection of functional bacteria[D]. Harbin: Master’s Thesis of Heilongjiang University, 2012 (in Chinese).
    [14] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.BAO SD. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000 (in Chinese).
    [15] IDRIS B, GOODWIN W. Comparison of chelex®-100 with two solid phase DNA extraction techniques[J]. Forensic Science International: Genetics Supplement Series, 2015, 5: e274-e275.
    [16] YOON SH, HA SM, KWON S, LIM J, KIM Y, SEO H, CHUN J. Introducing ezbiocloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies[J]. International journal of systematic and evolutionary microbiology, 2017, 67(5): 1613-1617.
    [17] 刘国红, 刘波, 王阶平, 朱育菁, 陈峥, 车建美, 陈倩倩. 基于可培养方法分析云南腾冲小空山火山谷芽胞杆菌分布特征[J]. 微生物学报, 2019, 59(6): 1063-1075.LIU GH, LIU B, WANG JP, ZHU YJ, CHEN Z, CHE JM, CHEN QQ. Distribution characteristics of Bacillus-like species of Xiaokong Mountain volcanic valley in Tengchong County, Yunnan Province[J]. Acta Microbiologica Sinica, 2019, 59(6): 1063-1075 (in Chinese).
    [18] 承磊, 马诗淳, 巫可佳, 张辉, 邓宇. 厌氧微生物培养分离:过去、现在和未来[J]. 微生物学报, 2021, 61(4): 946-968.CHENG L, MA SC, WU KJ, ZHANG H, DENG Y. Cultivation and isolation of anaerobes: past, present and future[J]. Acta Microbiologica Sinica, 2021, 61(4): 946-968 (in Chinese).
    [19] 樊华. 金沙与三星堆出土象牙结构和组分研究[D]. 成都: 成都理工大学硕士学位论文, 2006.FAN H. Analysis of structure and composition of ivory unearthed from Jinsha and Sanxingdui[D]. Chengdu: Master’s Thesis of Chengdu University of Technology, 2006 (in Chinese).
    [20] BICLOT A, HUYS GR, BACIGALUPE R, D’HOE K, VANDEPUTTE D, FALONY G, TITO RY, RAES J. Effect of cryopreservation medium conditions on growth and isolation of gut anaerobes from human faecal samples[J]. Microbiome, 2022, 10(1): 80.
    [21] XUE Y, SHEN R, LI Y, SUN Z, SUN X, LI F, LI X, CHENG Y, ZHU W. Anaerobic fungi isolated from bactrian camel rumen contents have strong lignocellulosic bioconversion potential[J]. Front Microbiol, 2022, 13: 888964.
    [22] HERRMANN AJ, GEHRINGER MM. A low-cost automized anaerobic chamber for long-term growth experiments and sample handling[J]. HardwareX, 2021, 10: e00237.
    [23] SCOLA BL, KHELAIFIA S, LAGIER JC, RAOULT D. Aerobic culture of anaerobic bacteria using antioxidants: a preliminary report[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2014, 33(10): 1781-1783.
    [24] RAJNI HK, GASHAW M, BO M. Anaerobes in Biotechnology[M]. Berlin: Springer, 2016.
    [25] 韩颖. 古井窖泥菌群中厌氧菌的纯化培养与分子鉴定[D]. 哈尔滨: 哈尔滨工业大学硕士学位论文, 2017.HAN Y. Purification and molecular identification of anaerobic bacteria in Gujing Tribute pit mud[D]. Harbin: Master’s Thesis of Harbin Institute of Technology, 2017 (in Chinese).
    [26] 蒲秀鑫, 柴丽娟, 徐鹏翔, 张晓娟, 陆震鸣, 王松涛, 沈才洪, 史劲松, 许正宏. 泸型酒窖泥中梭菌的分离及代谢产物分析[J]. 微生物学报, 2019, 59(12): 2427-2436.PU XX, CHAI LJ, XU PX, ZHANG XJ, LU ZM, WANG ST, SHEN CH, SHI JS, XU ZH. Isolation and metabolic characters of Clostridium strains from pit mud of Luzhou-flavor baijiu[J]. Acta Microbiologica Sinica, 2019, 59(12): 2427-2436 (in Chinese).
    [27] MOSSEL DAA, BEERENS H. Studies on the inhibitory properties of sodium thioglycollate on the germination of wet spores of clostridia[J]. Journal of Hygiene, 1968, 66(2): 269-272.
    [28] KIM M, OH HS, PARK SC, CHUN J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(2): 346-351.
    [29] 许育民, 冯大鸿, 李秋雨, 余苗, 王洪, 沈祥坤, 田瑞杰, 胡晓龙. 窖泥源可培养厌氧菌株挥发性代谢产物解析[J]. 轻工学报, 2021, 36(6): 21-29.XU YM, FENG DH, LI QY, YU M,WANG H, SHEN XK, TIAN RJ, HU XL. Analysis of volatile metabolites of cultivated anaerobic strains in pit mud[J]. Journal of Light Industry, 2021, 36(6): 21-29 (in Chinese).
    [30] ÁNXELA F, NALAKATH AH, VEIGA MC, CHRISTIAN K. Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans[J]. Applied Microbiology & Biotechnology, 2016, 100(7): 3361-3370.
    [31] WU D, ZHANG NF, SUN C, ZHANG WW, HAN SB, PAN J, WU M, DILBAR T, ZHU XF. Haloimpatiens lingqiaonensis gen. nov., sp. nov., an anaerobic bacterium isolated from paper-mill wastewater[J]. International journal of systematic and evolutionary microbiology, 2016, 66(2): 628-632.
    [32] 刘晓. 不同青贮料对育肥猪生长性能和肉品质及肠道微生物区系的影响[D]. 郑州: 河南农业大学硕士学位论文, 2019.LIU X, Effects of different fermented feeds on growth performance and meat quality and intestinal microorganism[D]. Zhengzhou: Master’s Thesis of Henan Agricultural University, 2019 (in Chinese).
    [33] PINZARI F, TATE J, BICCHIERI M, RHEE YJ, GADD GM. Biodegradation of ivory (natural apatite): possible involvement of fungal activity in biodeterioration of the lewis chessmen[J]. Environmental Microbiology, 2013, 15(4): 1050-1062.
    [34] POEHLEIN A, RIEGEL K, KÖNIG SM, LEIMBACH A, DANIEL R, PETER D. Genome sequence of Clostridium sporogenes DSM 795T, an amino acid-degrading, nontoxic surrogate of neurotoxin- producing Clostridium botulinum[J]. Standards in Genomic Sciences, 2015, 10(1): 40.
    [35] KIM SI, KIM E, AGHASA A, HWANG S. Shift in bacterial diversity in acidogenesis of gelatin and gluten seeded with various anaerobic digester inocula- sciencedirect[J]. Bioresource Technology, 2020, 306: 123158.
    [36] 马江波, 金正耀, 田建花, 陈德安. 三星堆铜器的合金成分和金相研究[J]. 四川文物, 2012(2): 90-96, 100.MA JB, JIN ZY, TIAN JH, CHEN DA. The alloy composition and metallographic study of bronze artifacts from Sanxingdui[J]. Sichuan Cultural Relics, 2012(2): 90-96, 100 (in Chinese).
    [37] 生态环境部, 国家市场监督管理总局. 土壤环境质量 农用地土壤污染风险管控标准: GB 15618—2018[S]. 北京: 中国标准出版社, 2018.
    [38] JANG HC, VALIX M. Overcoming the bacteriostatic effects of heavy metals on Acidithiobacillus thiooxidans for direct bioleaching of saprolitic Ni laterite ores[J]. Hydrometallurgy, 2017, 168: 21-25.
    [39] KANG J, YIN Z, PEI F, YE Z, SUN Y, SONG G, GE J. Driving factors of nitrogen conversion during chicken manure aerobic composting under penicillin g residue: quorum sensing and its signaling molecules[J]. Bioresource Technology, 2022, 345: 126469.
    [40] ZHANG J, WANG L, YANG J, LIU H, DAI JL. Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil[J]. Science of The Total Environment, 2015, 508: 29-36.
    [41] SONG F, LIU K, LOU Y, KUZYAKOV Y, WANG Y. Divergent responses of aggregate stability to long-term mineral and organic amendments between upland and paddy soils[J]. Journal of Soils and Sediments, 2022, 22(12): 2969-2981.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何昌杰,秦向宁,王宁,蒋璐蔓,朱莉萍,肖嶙,何砚秋,李思凡,邹立扣,赵珂. 三星堆象牙埋藏环境可培养厌氧微生物分离及多样性分析[J]. 微生物学通报, 2024, 51(6): 2094-2109

复制
分享
文章指标
  • 点击次数:237
  • 下载次数: 813
  • HTML阅读次数: 515
  • 引用次数: 0
历史
  • 收稿日期:2023-12-19
  • 录用日期:2024-03-25
  • 在线发布日期: 2024-06-07
  • 出版日期: 2024-06-20
文章二维码