科微学术

微生物学通报

仙山湖国家湿地公园湿地与旱地土壤细菌群落结构特征比较
作者:
基金项目:

长兴县自然资源和规划局科学研究项目(ZJXRCX-2022-012);浙江大学实验技术研究项目(SYB202137)


Comparison of bacterial community structure between wetland and dryland in Xianshan Lake National Wetland Park
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】湿地土壤微生物群落结构会因环境的变化自我调整,因而不同湿地环境会形成不同土壤菌群结构和分布特征。【目的】研究旱地与湿地土壤不同利用方式对土壤细菌的影响,以仙山湖国家湿地公园湿地和旱地两种土地利用方式(0−20 cm)作为研究对象。【方法】利用高通量测序技术对土壤细菌群落的物种组成、α多样性和丰度等进行分析,并结合土壤理化因子分析影响菌群结构的环境因子。【结果】仙山湖湿地系统土壤中存在的细菌隶属于49个门147个纲。在仙山湖湿地土壤的优势菌门(OTU>1%)中,旱地的优势菌门为酸杆菌门(Acidobacteria)、变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、泉古菌门(Crenarchaeota)、放线菌门(Actinobacteria)、蓝藻门(Cyanobacteria)、芽单胞菌门(Gemmatimonadetes)、浮霉菌门(Planctomycetes)和拟杆菌门(Bacteroidetes);湿地的优势菌门为变形菌门(Proteobacteria)、蓝藻门(Cyanobacteria)、拟杆菌门(Bacteroidetes)、绿弯菌门(Chloroflexi)、酸杆菌门(Acidobacteria)、厚壁菌门(Firmicutes)和硝化螺旋菌门(Nitrospirae)。在优势菌属(OTU>0.3%)中,旱地的优势菌属为Candidatus Solibacter、柯里氏念珠菌属(Candidatus Koribacter)、红游动菌属(Rhodoplanes)、伯克霍尔德菌属(Burkholderia)和分枝杆菌属(Mycobacterium),湿地的优势菌属为地杆菌属(Geobacter)、拟杆菌属(Bacteroides)、慢生型根瘤菌属(Bradyrhizobium)、Dok59、神奇甲基菌属(Candidatus Methylomirabilis)和黄杆菌属(Flavobacterium)。湿地土壤与旱地土壤优势OTU均与有机质含量呈正相关,与含水量、pH呈负相关。此外,线性判别分析(linear discriminant analysis effect size, LEfSe)显示了旱地与湿地的土壤生物标记物与土壤理化性质的关系。【结论】土地利用方式变化能显著改变仙山湖国家湿地公园湿地土壤的细菌菌群结构,可为湿地土壤的保护提供理论依据。

    Abstract:

    [Background] The microbial community structure of wetland soil will adjust itself according to the environmental changes. Therefore, different wetland environments will shape soil microbial communities with different structures and distribution characteristics. [Objective] To investigate the impacts of land use changes on soil bacteria in in dryland and wetland, we collected soil samples of two land use patterns (0−20 cm) from the wetland and dryland of Xianshan Lake National Wetland Park for analysis. [Methods] High-throughput sequencing was employed to study the composition, α-diversity, and abundance of soil bacterial communities, and the soil physical and chemical factors affecting bacterial community structure were analyzed. [Results] The bacteria in the soil of Xianshan Lake Wetland Park belonged to 147 classes of 49 phyla. The dominant phyla (OTUs>1%) in the dryland soil were Acidobacteria, Proteobacteria, Chloroflexi, Crenarchaeota, Actinobacteria, Cyanobacteria, Gemmatimonadetes, Planctomycetes, and Bacteroidetes, and those in the wetland soil were Proteobacteria, Cyanobacteria, Bacteroidetes, Chloroflexi, Acidobacteria, Firmicutes, and Nitrospirae. The dominant genus (OTUs>0.3%) were Candidatus Solibacter, Candidatus Koribacter, Rhodoplanes, Burkholderia, and Mycobacterium in the dryland and Geobacter, Bacteroides, Bradyrhizobium, Dok59, Candidatus Methylomirabilis, and Flavobacterium in the wetland. The dominant OTUs of wetland soil and dryland soil were positively correlated with soil carbon content and negatively correlated with soil water content and pH. The LEfSe results revealed the relationship between soil biomarkers and soil physical and chemical properties in the dryland and wetland. [Conclusion] Land use changes could vitally alter the bacterial community structure in the wetland soil of Xianshan Lake Wetland Park, it can provide theoretical basis for wetland soil protection.

    参考文献
    [1] 陈宜瑜, 吕宪国. 湿地功能与湿地科学的研究方向[J]. 湿地科学, 2003, 1(1): 7-11.CHEN YY, LÜ XG. The wetland function and research tendency of wetland science[J]. Wetland Science, 2003, 1(1): 7-11 (in Chinese).
    [2] 王勇辉, 焦黎. 艾比湖湿地土壤有机碳及储量空间分布特征[J]. 生态学报, 2016, 36(18): 5893-5901.WANG YH, JIAO L. The characteristics and storage of soil organic carbon in the Ebinur Lake wetland[J]. Acta Ecologica Sinica, 2016, 36(18): 5893-5901 (in Chinese).
    [3] 李海涛, 沈文清, 刘琪璟, 于贵瑞. 湿地生态系统的碳循环研究进展[J]. 江西科学, 2003, 21(3): 160-167.LI HT, SHEN WQ, LIU QJ, YU GR. On the study of carbon cycle in wetland ecosystems[J]. Jiangxi Science, 2003, 21(3): 160-167 (in Chinese).
    [4] XU ZW, YU GR, ZHANG XY, GE JP, HE NP, WANG QF, WANG D. The variations in soil microbial communities, enzyme activities and their relationships with soil organic matter decomposition along the northern slope of Changbai Mountain[J]. Applied Soil Ecology, 2015, 86: 19-29.
    [5] WU HL, WANG XZ, HE XJ, ZHANG SB, LIANG RB, SHEN J. Effects of root exudates on denitrifier gene abundance, community structure and activity in a micro-polluted constructed wetland[J]. Science of the Total Environment, 2017, 598: 697-703.
    [6] 刘洋, 黄懿梅, 曾全超. 黄土高原不同植被类型下土壤细菌群落特征研究[J]. 环境科学, 2016, 37(10): 3931-3938.LIU Y, HUANG YM, ZENG QC. Soil bacterial communities under different vegetation types in the Loess Plateau[J]. Environmental Science, 2016, 37(10): 3931-3938 (in Chinese).
    [7] BOSSUYT H, DENEF K, SIX J, FREY SD, MERCKX R, PAUSTIAN K. Influence of microbial populations and residue quality on aggregate stability[J]. Applied Soil Ecology, 2001, 16(3): 195-208.
    [8] 张华, 李贺鹏, 岳春雷, 刘彬, 潘国良. 仙山湖国家湿地公园生态系统服务功能价值评估[J]. 广东林业科技, 2015, 31(5): 41-46.ZHANG H, LI HP, YUE CL, LIU B, PAN GL. Evaluation on the ecosystem services of Xianshan Lake national wetland park[J]. Guangdong Forestry Science and Technology, 2015, 31(5): 41-46 (in Chinese).
    [9] 张华, 傅宇, 朱培, 毛慧. 长兴仙山湖国家湿地公园湿地资源及其保护研究[J]. 华东森林经理, 2014, 28(4): 44-47.ZHANG H, FU Y, ZHU P, MAO H. Study on wetland resources and protection in Changxing Xianshanhu national wetland park[J]. East China Forest Management, 2014, 28(4): 44-47 (in Chinese).
    [10] 姚贤林, 严小宝. 浙江长兴仙山湖湿地公园现状分析、景点规划与形象策划[J]. 华东森林经理, 2009, 23(3): 57-60.YAO XL, YAN XB. Present situation analysis, scenic spot planning and image planning of Xianshanhu wetland park in Changxing, Zhejiang Province[J]. East China Forest Management, 2009, 23(3): 57-60 (in Chinese).
    [11] 蒋敏, 朱培, 孙勇, 沈杨. 仙山湖国家湿地公园湿地类型分析及生态系统研究[J]. 华东森林经理, 2017, 31(3): 42-45.JIANG M, ZHU P, SUN Y, SHEN Y. Wetland type analysis and ecosystem research of Xianshan Lake National Wetland Park[J]. East China Forest Management, 2017, 31(3): 42-45 (in Chinese).
    [12] 唐盛. 湿地公园景观规划研究: 以仙山湖湿地公园为例[D]. 杭州: 浙江农林大学硕士学位论文, 2017.TANG S. The study on landscape planning and design of wetland park: A case study on XianShan Lake Wetland Park[D]. Hangzhou: Master’s Thesis of Zhejiang A&F University, 2017 (in Chinese).
    [13] 胡孙田, 沈晓飞, 方黎明, 孔立方, 黄文荧. 浙江长兴仙山湖国家湿地公园森林风景资源调查与评价[J]. 吉林林业科技, 2020, 49(2): 32-34, 40.HU ST, SHEN XF, FANG LM, KONG LF, HUANG WY. Investigation and evaluation of forest landscape resources in Changxing Xianshan Lake national wetland park of Zhejiang Province[J]. Journal of Jilin Forestry Science and Technology, 2020, 49(2): 32-34, 40 (in Chinese).
    [14] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.LU RK. Methods of soil agrochemical analysis[M]. Beijing: China Agriculture Scientech Press, 2000 (in Chinese).
    [15] CUI EP, WU Y, ZUO YR, CHEN H. Effect of different biochars on antibiotic resistance genes and bacterial community during chicken manure composting[J]. Bioresource Technology, 2016, 203: 11-17.
    [16] HUANG LP, WANG Q, JIANG LJ, ZHOU P, QUAN X, LOGAN BE. Adaptively evolving bacterial communities for complete and selective reduction of Cr(VI), Cu(II), and Cd(II) in biocathode bioelectrochemical systems[J]. Environmental Science & Technology, 2015, 49(16): 9914-9924.
    [17] 金宇. 生物肥影响下的镉活性和稻米镉富集机理[D]. 杭州: 浙江大学硕士学位论文, 2021.JIN Y. Mechanisms of cadmium activity and its accumulation in rice grain under biofertilizer application[D]. Hangzhou: Master’s Thesis of Zhejiang University, 2021 (in Chinese).
    [18] 陈德强. 市政脱水污泥厌氧消化过程中产气规律研究[D]. 成都: 西南石油大学硕士学位论文, 2015.CHEN DQ. Study on the law of gas production during anaerobic digestion of municipal dehydrated sludge[D]. Chengdu: Master’s Thesis of Southwest Petroleum University, 2015 (in Chinese).
    [19] 罗晓虹, 王子芳, 陆畅, 黄容, 王富华, 高明. 土地利用方式对土壤团聚体稳定性和有机碳含量的影响[J]. 环境科学, 2019, 40(8): 3816-3824.LUO XH, WANG ZF, LU C, HUANG R, WANG FH, GAO M. Effects of land use type on the content and stability of organic carbon in soil aggregates[J]. Environmental Science, 2019, 40(8): 3816-3824 (in Chinese).
    [20] 贾远航, 靳振江, 袁武, 程跃扬, 邱江梅, 梁锦桃, 潘复静, 刘德深. 会仙岩溶湿地、稻田与旱地土壤细菌群落结构特征比较[J]. 环境科学, 2019, 40(7): 3313-3323.JIA YH, JIN ZJ, YUAN W, CHENG YY, QIU JM, LIANG JT, PAN FJ, LIU DS. Comparison of soil bacterial community structure between paddy fields and dry land in the Huixian Karst wetland, China[J]. Environmental Science, 2019, 40(7): 3313-3323 (in Chinese).
    [21] 陈孟立, 曾全超, 黄懿梅, 倪银霞. 黄土丘陵区退耕还林还草对土壤细菌群落结构的影响[J]. 环境科学, 2018, 39(4): 1824-1832.CHEN ML, ZENG QC, HUANG YM, NI YX. Effects of the farmland-to-forest/grassland conversion program on the soil bacterial community in the Loess Hilly Region[J]. Environmental Science, 2018, 39(4): 1824-1832 (in Chinese).
    [22] 张杰, 胡维, 刘以珍, 葛刚, 吴兰. 鄱阳湖湿地不同土地利用方式下土壤微生物群落功能多样性[J]. 生态学报, 2015, 35(4): 965-971.ZHANG J, HU W, LIU YZ, GE G, WU L. Response of soil microbial functional diversity to different land-use types in wetland of Poyang Lake, China[J]. Acta Ecologica Sinica, 2015, 35(4): 965-971 (in Chinese).
    [23] 林黎, 崔军, 陈学萍, 方长明. 滩涂围垦和土地利用对土壤微生物群落的影响[J]. 生态学报, 2014, 34(4): 899-906.LIN L, CUI J, CHEN XP, FANG CM. Effects of reclamation on tidal flat and land use on soil microbial community[J]. Acta Ecologica Sinica, 2014, 34(4): 899-906 (in Chinese).
    [24] 罗鑫, 张海燕, 刘明元, 邵彪. 稻田土壤微生物群落多样性研究进展[J]. 安徽农业科学, 2018, 46(21): 42-43, 47.LUO X, ZHANG HY, LIU MY, SHAO B. Study review on microbial community diversity in paddy soils[J]. Journal of Anhui Agricultural Sciences, 2018, 46(21): 42-43, 47 (in Chinese).
    [25] JONES RT, ROBESON MS, LAUBER CL, HAMADY M, KNIGHT R, FIERER N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses[J]. The ISME Journal, 2009, 3(4): 442-453.
    [26] 张福特, 黄惠琴, 崔莹, 孙前光, 朱军, 刘敏, 鲍时翔. 佳西热带雨林土壤芽胞杆菌分离与多样性分析[J]. 微生物学杂志, 2014, 34(4): 42-46.ZHANG FT, HUANG HQ, CUI Y, SUN QG, ZHU J, LIU M, BAO SX. Isolation and diversity of Bacillus species from Jiaxi tropical rain forest soil[J]. Journal of Microbiology, 2014, 34(4): 42-46 (in Chinese).
    [27] RIME T, HARTMANN M, BRUNNER I, WIDMER F, ZEYER J, FREY B. Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield[J]. Molecular Ecology, 2015, 24(5): 1091-1108.
    [28] YU ZH, LI YS, WANG GH, LIU JJ, LIU JD, LIU XB, HERBERT SJ, JIN J. Effectiveness of elevated CO2 mediating bacterial communities in the soybean rhizosphere depends on genotypes[J]. Agriculture, Ecosystems & Environment, 2016, 231: 229-232.
    [29] 杜思瑶, 于淼, 刘芳华, 肖雷雷, 张洪霞, 陶军, 顾卫, 顾京晏, 陈茜. 设施种植模式对土壤细菌多样性及群落结构的影响[J]. 中国生态农业学报, 2017, 25(11): 1615-1625.DU SY, YU M, LIU FH, XIAO LL, ZHANG HX, TAO J, GU W, GU JY, CHEN X. Effect of facility management regimes on soil bacterial diversity and community structure[J]. Chinese Journal of Eco-agriculture, 2017, 25(11): 1615-1625 (in Chinese).
    [30] 赵贵明, 赵勇胜, 杨海荣, 陈颖. 环状脂肪酸芽孢杆菌的检测与控制研究进展[J]. 检验检疫学刊, 2011, 21(3): 8-12.ZHAO GM, ZHAO YS, YANG HR, CHEN Y. Review on the detection and control of Alicyclobacillus spp.[J]. Journal of Inspection and Quarantine, 2011, 21(3): 8-12 (in Chinese).
    [31] 张栋, 张晓瑜, 汤辉, 张秀敏, 张利平. 河北平泉农田土壤放线菌物种多样性筛查[J]. 食品工业科技, 2014, 35(8): 197-201.ZHANG D, ZHANG XY, TANG H, ZHANG XM, ZHANG LP. Screening of species diversity of farmland soil Actinomyces in Pingquan, Hebei Province[J]. Science and Technology of Food Industry, 2014, 35(8): 197-201 (in Chinese).
    [32] COENYE T, VANDAMME P. Diversity and significance of Burkholderia species occupying diverse ecological niches[J]. Environmental Microbiology, 2003, 5(9): 719-729.
    [33] 张珂飞, 钟永嘉, 孙丽莉, 廖红. 植物有益伯克霍尔德氏菌的研究进展及其在农业中的应用[J]. 微生物学报, 2021, 61(8): 2205-2218.ZHANG KF, ZHONG YJ, SUN LL, LIAO H. Plant-associated beneficial Burkholderia[J]. Acta Microbiologica Sinica, 2021, 61(8): 2205-2218 (in Chinese).
    [34] 吴燕锋, 章光新. 湿地生态水文模型研究综述[J]. 生态学报, 2018, 38(7): 2588-2598.WU YF, ZHANG GX. Review of development, frontiers and prospects of wetlands eco-hydrological models[J]. Acta Ecologica Sinica, 2018, 38(7): 2588-2598 (in Chinese).
    [35] 高鹤. 植物根际微生物研究进展[J]. 农业科技与装备, 2021(1): 24-26.GAO H. Research process on plant rhizosphere microorganisms[J]. Agricultural Science & Technology and Equipment, 2021(1): 24-26 (in Chinese).
    [36] 邱远金, 赵亚琴, 张际昭, 樊丛照, 阿依别克·热合木都拉, 王果平, 朱军. 基于高通量测序研究番红花不同生长期根际土壤中真菌群落结构及多样性[J]. 中国现代中药, 2023, 25(3): 574-581.QIU YJ, ZHAO YQ, ZHANG JZ, FAN CZ, Aybek·Rehmetulla, WANG GP, ZHU J. Fungal community structures and diversities in rhizosphere soils of Crocus sativus L. in different growth stages based on high-throughput sequencing[J]. Modern Chinese Medicine, 2023, 25(3): 574-581 (in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曾慧慧,蒋敏,赵明星,张宪翠,朱力力,毛伟华,吴酬飞,张立钦. 仙山湖国家湿地公园湿地与旱地土壤细菌群落结构特征比较[J]. 微生物学通报, 2024, 51(6): 1983-1994

复制
分享
文章指标
  • 点击次数:251
  • 下载次数: 855
  • HTML阅读次数: 459
  • 引用次数: 0
历史
  • 收稿日期:2023-10-04
  • 录用日期:2024-01-05
  • 在线发布日期: 2024-06-07
  • 出版日期: 2024-06-20
文章二维码