科微学术

微生物学通报

拟无枝酸菌属次级代谢潜能分析及代表菌株基因编辑体系建立
作者:
基金项目:

国家重点研发计划(2022YFC2303100);国家自然科学基金(32270080)


Secondary metabolic potential of Amycolatopsis and development of gene editing systems for representative strains
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    【背景】 拟无枝酸菌属作为一类重要的稀有放线菌,是抗菌、抗癌类药物的重要来源,其合成天然产物的潜能尚待系统分析及发掘。【目的】 揭示拟无枝酸菌属不同结构类型次级代谢产物合成潜能,并建立两个代表性菌株的遗传操作体系,为结构新颖或生物活性优良的次级代谢产物发掘及研究提供条件。【方法】 使用多位点序列分析(multi-locus sequence analysis, MLSA)方法评价已公布的拟无枝酸菌基因组之间的相似度。同时,使用antiSMASH分析所有基因组的基因簇,预测其合成产物结构信息,并利用BiG-SCAPE对基因簇进行聚类分析。利用pSET152整合载体优化两个代表性拟无枝酸菌的接合转移条件,以建立遗传操作体系。采用CRISPR-cBEST碱基编辑和传统的同源重组确定靶基因失活方案。【结果】 146个拟无枝酸菌基因组的生物信息学分析显示,平均每个基因组中含有33个基因簇。其中聚肽、聚酮及萜类合成基因簇的丰度较高,并且大多数基因簇与已知化合物基因簇不同。成功确定了拟无枝酸菌属两个代表菌株的最适接合转移条件。尽管CRISPR基因编辑质粒能够转入拟无枝酸菌,但6个载体均未成功编辑目标基因,而利用传统同源重组方法则成功敲除目标基因,建立了目的基因敲除系统。【结论】 次级代谢潜能分析显示拟无枝酸菌属中蕴含丰富的新颖天然产物资源。此外,成功建立的基因编辑体系实现了外源基因整合及内源基因敲除,为该属新颖次级代谢产物的挖掘及生物合成研究提供了坚实的研究基础。

    Abstract:

    [Background] As an important group of rare actinomycetes, Amycolatopsis serves as a significant source of antimicrobial and anticancer drugs. The rich biosynthetic gene clusters (BGCs) of secondary metabolites in the genomes of Amycolatopsis await systematic analysis and mining. [Objective] To unveil the biosynthetic potential of secondary metabolites with different structural types in Amycolatopsis and establish genetic manipulation systems for two representative strains, laying a foundation for mining structurally novel or bioactive secondary metabolites. [Methods] The multi-locus sequence analysis (MLSA) was performed to evaluate the similarity among publicly available Amycolatopsis genomes. Simultaneously, antiSMASH was employed to analyze the gene clusters in all genomes and predict the structural information of the products. BiG-SCAPE was used for cluster analysis. The integration plasmid pSET152 was employed to optimize the conjugation transfer conditions for two representative Amycolatopsis strains, and then genetic manipulation systems were established. CRISPR-cBEST and homologous recombination were employed to determine the strategies for target gene inactivation. [Results] Bioinformatics analysis of 146 Amycolatopsis genomes revealed an average of 33 BGCs per genome. The BGCs associated with peptides, polyketides, and terpenes exhibited high abundance, with the majority differing from known BGCs. The optimal conjugation transfer conditions for two representative Amycolatopsis strains were successfully determined. Although CRISPR gene editing plasmids could be transferred into Amycolatopsis, none of the six vectors successfully edited the target gene. Conversely, target genes were successfully knocked out by homologous recombination, on the basis of which the gene editing systems were established. [Conclusion] The secondary metabolic potential unveils a rich repository of novel natural products within Amycolatopsis. Moreover, the successfully established genetic editing system enables the integration of exogenous genes and the inactivation of endogenous genes, laying a solid foundation for the mining and biosynthesis of novel secondary metabolites in this genus.

    参考文献
    [1] POMA PL, NOTARBARTOLO M, LABBOZZETTA M, SANGUEDOLCE R, ALAIMO A, CARINA V, MAURICI A, CUSIMANO A, CERVELLO M, D'ALESSANDRO N. Antitumor effects of the novel NF-kappaB inhibitor dehydroxymethyl-epoxyquinomicin on human hepatic cancer cells:analysis of synergy with cisplatin and of possible correlation with inhibition of pro-survival genes and IL-6 production[J]. International Journal of Oncology, 2006, 28(4):923-930.
    [2] SONG ZQ, XU TC, WANG JF, HOU YG, LIU CS, LIU SS, WU SH. Secondary metabolites of the genus Amycolatopsis:structures, bioactivities and biosynthesis[J]. Molecules, 2021, 26(7):1884.
    [3] KISIL OV, EFIMENKO TA, EFREMENKOVA OV. Looking back to Amycolatopsis:history of the antibiotic discovery and future prospects[J]. Antibiotics, 2021, 10(10):1254.
    [4] XU L, HUANG H, WEI W, ZHONG Y, TANG B, YUAN H, ZHU L, HUANG WY, GE M, YANG S, ZHENG HJ, JIANG WH, CHEN DJ, ZHAO GP, ZHAO W. Complete genome sequence and comparative genomic analyses of the vancomycin-producing Amycolatopsis orientalis[J]. BMC Genomics, 2014, 15(1):363.
    [5] SHI YR, YE F, SONG YL, ZHANG XC, LU CH, SHEN YM. Rifamycin W analogues from Amycolatopsis mediterranei S699Δ rif-orf5 strain[J]. Biomolecules, 2021, 11(7):920.
    [6] LUKEŽIČ T, LEŠNIK U, PODGORŠEK A, HORVAT J, POLAK T, ŠALA M, JENKO B, RASPOR P, HERRON PR, HUNTER IS, PETKOVIĆ H. Identification of the chelocardin biosynthetic gene cluster from Amycolatopsis sulphurea:a platform for producing novel tetracycline antibiotics[J]. Microbiology, 2013, 159(Pt 12):2524-2532.
    [7] MATSUMOTO N, TSUCHIDA T, SAWA R, IINUMA H, NAKAMURA H, NAGANAWA H, SAWA T, TAKEUCHI T. Epoxyquinomicins A, B, C and D, new antibiotics from Amycolatopsis. III. Physico-chemical properties and structure determination[J]. The Journal of Antibiotics, 1997, 50(11):912-915.
    [8] LI XM, LI XM, ZHU J, WANG HX, LU CH. Carbamothioic S-acid derivative and kigamicins, the activated production of silent metabolites in Amycolatopsis alba DSM 44262Δabm9 elicited by N-acetyl-d-glucosamine[J]. Natural Product Research, 2020, 34(24):3514-3521.
    [9] BEEMELMANNS C, RAMADHAR TR, KIM KH, KLASSEN JL, CAO SG, WYCHE TP, HOU YP, POULSEN M, BUGNI TS, CURRIE CR, CLARDY J. Macrotermycins A-D, glycosylated macrolactams from a termite-associated Amycolatopsis sp. M39[J]. Organic Letters, 2017, 19(5):1000-1003.
    [10] JAYASURIYA H, HERATH K, ONDEYKA JG, ZHANG CW, ZINK DL, BROWER M, GAILLIOT FP, GREENE J, BIRDSALL G, VENUGOPAL J, USHIO M, BURGESS B, RUSSOTTI G, WALKER A, HESSE M, SEELEY A, JUNKER B, CONNORS N, SALAZAR O, GENILLOUD O, LIU K, MASUREKAR P, BARRETT JF, SINGH SB. Isolation and structure elucidation of thiazomycin-a potent thiazolyl peptide antibiotic from Amycolatopsis fastidiosa[J]. The Journal of Antibiotics, 2007, 60(9):554-564.
    [11] UENO M, IIJIMA M, MASUDA T, KINOSHITA N, IINUMA H, NAGANAWA H, HAMADA M, ISHIZUKA M, TAKEUCHI T. Dethymicin, a novel immunosuppressant isolated from an Amycolatopsis. Fermentation, isolation, physico-chemical properties and biological activities[J]. The Journal of Antibiotics, 1992, 45(12):1819-1826.
    [12] HASHIZUME H, IIJIMA K, YAMASHITA K, KIMURA T, WADA SI, SAWA R, IGARASHI M. Valgamicin C, a novel cyclic depsipeptide containing the unusual amino acid cleonine, and related valgamicins A, T and V produced by Amycolatopsis sp. ML1-hF4[J]. The Journal of Antibiotics, 2017. DOI:10.1038/ja.2017.135.
    [13] SHENG Y, FOTSO S, SERRILL JD, SHAHAB S, SANTOSA DA, ISHMAEL JE, PROTEAU PJ, ZABRISKIE TM, MAHMUD T. Succinylated apoptolidins from Amycolatopsis sp. ICBB 8242[J]. Organic Letters, 2015, 17(10):2526-2529.
    [14] CAI ZQ, CHEN QL, WANG HY, HE YC, WANG W, ZHAO XY, YE QF. Degradation of the novel herbicide ZJ0273 by Amycolatopsis sp. M3-1 isolated from soil[J]. Applied Microbiology and Biotechnology, 2012, 96(5):1371-1379.
    [15] PAN GH, XU ZR, GUO ZK, Hindra, MA M, YANG D, ZHOU H, GANSEMANS Y, ZHU XC, HUANG Y, ZHAO LX, JIANG Y, CHENG JH, van NIEUWERBURGH F, SUH JW, DUAN YW, SHEN B. Discovery of the leinamycin family of natural products by mining actinobacterial genomes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(52):E11131-E11140.
    [16] TONG YJ, WHITFORD CM, ROBERTSEN HL, BLIN K, JØRGENSEN TS, KLITGAARD AK, GREN T, JIANG XL, WEBER T, LEE SY. Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(41):20366-20375.
    [17] CHEN S, WU QH, SHEN QQ, WANG H. Progress in understanding the genetic information and biosynthetic pathways behind Amycolatopsis antibiotics, with implications for the continued discovery of novel drugs[J]. Chembiochem:a European Journal of Chemical Biology, 2016, 17(2):119-128.
    [18] LABEDA DP, DUNLAP CA, RONG XY, HUANG Y, DOROGHAZI JR, JU KS, METCALF WW. Phylogenetic relationships in the family Streptomycetac43. using multi-locus sequence analysis[J]. Antonie Van Leeuwenhoek, 2017, 110(4):563-583.
    [19] RONG XY, HUANG Y. Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA-DNA hybridization, validating the MLSA scheme for systematics of the whole genus[J]. Systematic and Applied Microbiology, 2012, 35(1):7-18.
    [20] CAMACHO C, COULOURIS G, AVAGYAN V, MA N, PAPADOPOULOS J, BEALER K, MADDEN TL. BLAST+:architecture and applications[J]. BMC Bioinformatics, 2009, 10:421.
    [21] TAMURA K, STECHER G, KUMAR S. MEGA11:molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7):3022-3027.
    [22] LETUNIC I, BORK P. Interactive Tree Of Life (iTOL) v5:an online tool for phylogenetic tree display and annotation[J]. Nucleic Acids Research, 2021, 49(W1):W293-W296.
    [23] BLIN K, SHAW S, AUGUSTIJN HE, REITZ ZL, BIERMANN F, ALANJARY M, FETTER A, TERLOUW BR, METCALF WW, HELFRICH EJN, van WEZEL GP, MEDEMA MH, WEBER T. antiSMASH 7.0:new and improved predictions for detection, regulation, chemical structures and visualisation[J]. Nucleic Acids Research, 2023, 51(W1):W46-W50.
    [24] NAVARRO-MUÑOZ JC, SELEM-MOJICA N, MULLOWNEY MW, KAUTSAR SA, TRYON JH, PARKINSON EI, de LOS SANTOS ELC, YEONG M, CRUZ-MORALES P, ABUBUCKER S, ROETERS A, LOKHORST W, FERNANDEZ-GUERRA A, CAPPELINI LTD, GOERING AW, THOMSON RJ, METCALF WW, KELLEHER NL, BARONA-GOMEZ F, MEDEMA MH. A computational framework to explore large-scale biosynthetic diversity[J]. Nature Chemical Biology, 2020, 16:60-68.
    [25] SHANNON P, MARKIEL A, OZIER O, BALIGA NS, WANG JT, RAMAGE D, AMIN ND, SCHWIKOWSKI B, IDEKER T. Cytoscape:a software environment for integrated models of biomolecular interaction networks[J]. Genome Research, 2003, 13(11):2498-2504.
    [26] KIESER T, BIBB MJ, BUTTNER MJ, CHATER KF, HOPWOOD DA. Practical Streptomyces genetics[M]. Norwich:John Innes Foundation, 2000.
    [27] EVEREST GJ, MEYERS PR. Evaluation of the antibiotic biosynthetic potential of the genus Amycolatopsis and description of Amycolatopsis circi sp. nov. Amycolatopsis equina sp. nov. and Amycolatopsis hippodromi sp. nov[J]. Journal of Applied Microbiology, 2011, 111(2):300-311.
    [28] HUANG Y, QI W, LU Z, LIU Z, GOODFELLOW M. Amycolatopsis rubida sp. nov. a new Amycolatopsis species from soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2001, 51(Pt 3):1093-1097.
    [29] CHEN J, SU JJ, WEI YZ, LI QP, YU LY, LIU HY, ZHANG YQ, ZHANG YQ. Amycolatopsis xylanica sp. nov. isolated from soil[J]. International Journal of Systematic and Evolutionary Microbiology 2010, 60(Pt 9):2124-2128.
    [30] KOMOR AC, KIM YB, PACKER MS, ZURIS JA, LIU DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533:420-424.
    [31] CPARRA J, BEATON A, SEIPKE RF, WILKINSON B, HUTCHINGS MI, DUNCAN KR. Antibiotics from rare actinomycetes, beyond the genus Streptomyces[J]. Current Opinion in Microbiology, 2023, 76:102385.
    [32] van BERGEIJK DA, TERLOUW BR, MEDEMA MH, van WEZEL GP. Ecology and genomics of Actinobacteria:new concepts for natural product discovery[J]. Nature Reviews Microbiology, 2020, 18:546-558.
    [33] 李栋, 范可强, 胡会涛, 潘国辉. 糖丝菌属次级代谢潜能分析及代表菌株基因编辑体系建立[J]. 微生物学通报, 2024. DOI:10.13344/j.microbiol.china.240067.LI D, FAN KQ, HU HT, PAN GH. Secondary metabolism potential of Saccharothrix and establishment of gene editing systems in representative strains[J]. Microbiology China, 2024. DOI:10.13344/j.microbiol. china.240067(in Chinese).
    [34] WEI B, LUO X, ZHOU ZY, HU GA, LI L, LIN HW, WANG H. Discovering the secondary metabolic potential of Saccharothrix[J]. Biotechnology Advances, 2024, 70:108295.
    [35] BARKA EA, VATSA P, SANCHEZ L, GAVEAU-VAILLANT N, JACQUARD C, MEIER-KOLTHOFF JP, KLENK HP, CLÉMENT C, OUHDOUCH Y, van WEZEL GP. Taxonomy, physiology, and natural products of Actinobacteria[J]. Microbiology and Molecular Biology Reviews:MMBR, 2015, 80(1):1-
    相似文献
    引证文献
引用本文

杨英哲,范可强,王海燕,向丽军,张书平,赵燕,潘国辉. 拟无枝酸菌属次级代谢潜能分析及代表菌株基因编辑体系建立[J]. 微生物学通报, 2024, 51(5): 1713-1731

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-02
  • 录用日期:2024-03-13
  • 在线发布日期: 2024-05-09
  • 出版日期: 2024-05-20
文章二维码