科微学术

微生物学通报

灰葡萄孢菌引起的向日葵叶斑和盘腐及热胁迫对病菌菌核形成的影响
作者:
基金项目:

国家农产品质量安全风险评估计划(GJFP20220107)


Leaf blotch and head rot caused by Botrytis cinerea on sunflower and effect of heat stress on sclerotium formation of the pathogen
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】 2022年8−9月,从甘肃省兰州市种植的食用向日葵田中采集到零星发病的叶斑和盘腐病害标样。【目的】 明确叶斑病和盘腐病的病原及其生物学特性。【方法】 采用单孢分离法进行病原菌分离;通过Koch’s法则明确分出病菌的致病性;采用形态学和分子生物学方法对病原菌进行种类鉴定;通过平板法测定试验菌株的适宜生长温度;观察经30 ℃ (生长抑制温度)培养后试验菌株产菌核特性的变化。【结果】 分离得到12株菌落形态不同的葡萄孢属菌株。试验菌株SKY-A−SKY-D接种食用向日葵离体叶片和花盘可引起与自然发病相似的症状,接种发病的叶片和花盘病组织上原接种菌的分出率达100%。试验菌株在PDA平板上15 ℃和20 ℃培养10−40 d,大型分生孢子无色至淡褐色,单胞,卵圆形、长椭圆形、球形、近球形、棒状或不规则形,[6.0−14.2 (−20.1)] μm×[6.0−10.4 (−14.9)] μm;菌核表生,黑色,球形、近球形、椭圆形或不规则形,(0.5−11.1) mm×(0.5−5.0) mm;Ⅰ型微菌核红褐色至黑褐色,表生或埋生,(26.9−492.5) μm×(14.9−149.3) μm,微菌核的组成细胞大小为(12.7−35.0) μm×(11.9−25.3) μm;Ⅱ型微菌核近黑色,埋生,(35.8−373.1) μm×(23.9−229.9) μm,微菌核的组成细胞大小为(8.2−16.4) μm×(8.2−14.9) μm;假微菌核由特化的附着胞构成,暗褐色至近黑色,埋生,(32.0−447.8) μm×(19.4−358.2) μm。试验菌株的菌丝适宜生长温度为20−25 ℃;菌核产生温度为5−25 ℃。30 ℃培养7 d后转至20 ℃培养14 d,可诱导2个不产菌核的菌株SKY-B和SKY-C产生菌核,突变株在继代培养时保持其产菌核能力。BLASTn分析结果显示,试验菌株SKY-A–SKY-D的rDNA-ITS序列(国家微生物科学数据中心登录号为NMDCN00038NP–NMDCN00038NS)与已知灰葡萄孢菌(Botrytis cinerea)序列的相似性达99.8%–100.0%。g3pdhhsp60rpb2多基因系统发育分析结果显示,4个试验菌株被聚在B. cinerea的不同亚群里。【结论】 引起向日葵叶斑和盘腐的病原菌被鉴定为B. cinerea,这是灰葡萄孢菌引起向日葵叶斑病和盘腐病在我国西北地区的首次报道。首次发现灰葡萄孢菌可以产生2种类型的微菌核。30 ℃热胁迫处理可诱导不产菌核的灰葡萄孢菌产生菌核,突变株的产菌核能力可遗传。

    Abstract:

    [Background] In August and September 2022, the plant samples of leaf blotch and head rot were collected from sporadic diseased fields of confectionery sunflower (Helianthus annuus) in Lanzhou, Gansu, China. [Objective] To identify and characterize the pathogens of leaf blotch and head rot. [Methods] We isolated the pathogens by the single spore isolation method, measured the pathogenicity of the isolates based on Koch's postulates, and identified the isolates by morphological observation and molecular biological methods. Furthermore, we determined the optimum growth temperatures of the isolates by the plate culture method, and the changes of sclerotium formation characteristics of the tested isolates were observed after cultured at 30℃ (growth inhibition temperature). [Results] Twelve Botrytis isolates with different colony morphology were isolated from the diseased plant samples. The inoculation of four isolates, SKY-A to SKY-D, on detached sunflower leaves and heads induced the symptoms similar to those of natural diseases in the field, and the re-isolation rates of inoculated isolates from the infected leaves and heads were 100%. When the four isolates were cultured on PDA plates at 15℃ and 20℃ for 10–40 d, macroconidia were pale to light brown, unicellular, oval, oblong, spherical, subspherical, clavate or irregular shaped, (6.0–14.2 (20.1)) μm×(6.0–10.4 (–14.9)) μm. The sclerotia were superficial, black, spherical, subspherical, ellipse or irregularly shaped, (0.5–11.1) mm×(0.5–5.0) mm. Type-I microsclerotia were reddish brown to dark brown, superficial or submerged, (26.9–492.5) μm×(14.9–149.3) μm, with the cell sizes of (12.7–35.0) μm×(11.9–25.3) μm. Type-II microsclerotia were nearly black, submerged, (35.8–373.1) μm×(23.9–229.9) μm, with the cell sizes of (8.2–16.4) μm×(8.2–14.9) μm. Pseudo-microsclerotia consisting of specialized appressoria were dark brown to nearly black, submerged, (32.0–447.8) μm×(19.4–358.2) μm. The optimal temperature range for mycelial growth and the temperature range for sclerotium formation were 20–25℃ and 5–25℃, respectively. After incubation at 30℃ for 7 d and then at 20℃ for 14 d, SKY-B and SKY-C originally uncapable of forming sclerotia formed sclerotia. Moreover, the mutants retained the ability of forming sclerotia in subculturing. BLASTn analysis showed that the rDNA-ITS sequences of SKY-A to SKY-D (National Microbiology Data Center Acc. No. NMDCN00038NP–NMDCN00038NS) had the similarity of 99.8%–100.0% with those of Botrytis cinerea strains in GenBank. The phylogenetic analysis based on the glyceraldehyde 3-phosphate dehydrogenase gene (g3pdh), heat shock protein 60 gene (hsp60), and DNA-dependent RNA polymerase subunit II gene (rpb2) showed that the four isolates were clustered in different subgroups of B. cinerea. [Conclusion] The pathogens causing leaf blotch and head rot on confectionery sunflower were identified as B. cinerea. This is the first report of leaf blotch and head rot caused by B. cinerea on confectionery sunflower in the Northwest China. For the first time, we discover that B. cinerea can produce two types of microsclerotia. The heat stress at 30℃ induced the B. cinerea isolates uncapable of forming sclerotia to form sclerotia, and the sclerotium-forming ability of the mutants could be inherited.

    参考文献
    [1] 朱孔艳, 韩升才, 赵榕, 温玉洁, 胡昊驰, 乔益民, 卢佳锋, 曹凯, 许政晗, 包海柱, 高聚林. 中国向日葵生产、消费现状与前景[J]. 农业展望, 2023, 19(7):64-71.ZHU KY, HAN SC, ZHAO R, WEN YJ, HU HC, QIAO YM, LU JF, CAO K, XU ZH, BAO HZ, GAO JL. Production, consumption status and prospect of sunflower in China[J]. Agricultural Outlook, 2023, 19(7):64-71(in Chinese).
    [2] 冯九焕. 中国食用向日葵育种国产化历程及研究进展[J]. 西北植物学报, 2022, 42(10):1779-1800.FENG JH. Breeding history and research advancements of confection sunflower in China[J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(10):1779-1800(in Chinese).
    [3] 白晓瑞. 我国向日葵生产比较优势分析[J]. 辽宁农业科学, 2022(2):87-89.BAI XR. Comparative advantage analysis of sunflower production in China[J]. Liaoning Agricultural Sciences, 2022(2):87-89(in Chinese).
    [4] WILLIAMSON B, TUDZYNSKI B, TUDZYNSKI P, van KAN JAL. Botrytis cinerea:the cause of grey mould disease[J]. Molecular Plant Pathology, 2007, 8(5):561-580.
    [5] 张中义, 中国真菌志. 第二十六卷, 葡萄孢属、柱隔孢属[M]. 北京:科学出版社, 2006:1-89.ZHANG ZY. Flora Fungorum Sinicorum (Vol. 26). Botrytis and Ramularia[M]. Beijing:Science Press, 2006:1-89(in Chinese).
    [6] 戴芳澜. 中国真菌总汇[M]. 北京:科学出版社, 1979:1-1527.TAI FL. Sylloge Fungorum Sinicorum[M]. Beijing:Science Press, 1979:1-1527(in Chinese).
    [7] WHITE TJ, BRUNS T, LEE S, TAYLOR J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[M]//INNIS MA, GELFAND DH, SNINSKY JJ, WHITE TJ. PCR Protocols:a guide to methods and applications. Amsterdam:Elsevier, 1990:315-322.
    [8] STAATS M, van BAARLEN P, van KAN JAL. Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity[J]. Molecular Biology and Evolution, 2005, 22(2):333-346.
    [9] Azevedo DMQ, Martins SDS, Guterres DC, Martins MD, AraÚjo L, GuimarÃes LMS, Alfenas AC, Furtado GQ. Diversity, prevalence and phylogenetic positioning of Botrytis species in Brazil[J]. Fungal Biology, 2020, 124(11):940-957.
    [10] 刘帆兴, 宋莉萍, 余楚英, 林处发, 汤利光, 汪爱华. 引起莴苣灰霉病的灰葡萄孢红色菌系的分离及鉴定[J]. 植物病理学报, 2023, 53(5):966-969.LIU FX, SONG LP, YU CY, LIN CF, TANG LG, WANG AH. Isolation and identification of a red strain of Botrytis cinerea causing gray mold on lettuce[J]. Acta Phytopathologica Sinica, 2023, 53(5):966-969(in Chinese).
    [11] He SQ, Wen ZH, Bai B, Jing ZQ, Wang XW. Botrytis polygoni, a new species of the genus Botrytis infecting Polygonaceae in Gansu, China[J]. Mycologia, 2021, 113(1):78-91.
    [12] Liu QL, Li GQ, Li JQ, Chen SF. Botrytis eucalypti, a novel species isolated from diseased Eucalyptus seedlings in South China[J]. Mycological Progress, 2016, 15(10/11):1057-1079.
    [13] Prasannath K, Shivas RG, Galea VJ, Akinsanmi OA. Novel Botrytis and Cladosporium species associated with flower diseases of Macadamia in Australia[J]. Journal of Fungi, 2021, 7(11):898.
    [14] Zhong S, Zhang J, Zhang GZ. Botrytis polyphyllae:a new Botrytis species causing gray mold on Paris polyphylla[J]. Plant Disease, 2019, 103(7):1721-1727.
    [15] Zhou YJ, Zhang J, Wang XD, Yang L, Jiang DH, Li GQ, Hsiang T, Zhuang WY. Morphological and phylogenetic identification of Botrytis sinoviticola, a novel cryptic species causing gray mold disease of table grapes (Vitis vinifera) in China[J]. Mycologia, 2014, 106(1):43-56.
    [16] Saito S, Michailides TJ, Xiao CL. First report of Botrytis pseudocinerea causing gray mold on blueberry in North America[J]. Plant Disease, 2014, 98(12):1743.
    [17] Kumar S, Stecher G, Tamura K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7):1870-1874.
    [18] Jarvis WR. Botryotinia and Botrytis species:taxonomy, physiology and pathogenicity[M]. Research Branch, Canada Department of Agriculture, Ottawa. 1977:1-195.
    [19] Grindle M. Phenotypic differences between natural and induced variants of Botrytis cinerea[J]. Journal of General Microbiology, 1979, 111(1):109-120.
    [20] Plesken C, Pattar P, Reiss B, Noor ZN, Zhang L, Klug K, Huettel B, Hahn M. Genetic diversity of Botrytis cinerea revealed by multilocus sequencing, and identification of B. cinerea populations showing genetic isol??????????佤????卮呣??塨??佴?????坴啡??????啝刮唠乆??卮????女?卩?删???卮啴???剩?佮??嘬?′?礲渱愬洠椱挲猺?漶昳‰?椷?嘼敢牲琾楛挲椱汝氠楕畲浢??楣??獉瀮攠捏楮攠獴?浥椠捧牥潮獥捳汩敳爠潡瑮楤愠?楥湲?晩楮敡汴摩?獮漠楯汦猠?楨湬?牭敹獤灯潳湰獯敲?瑳漠?晦甠洼楩朾慂瑯楴潲湹??捳爠潣灩灮楥湲来?瀼愯瑩琾攠牐湥獲??慛湊摝?映汊潯潵摲楮湡杬嬠?嵦??偨桹祴瑯潰灡慴瑨桯潬汯潧杹礠???べ?????と?????????????tschrift), 1983, 108(1):54-60(in German).
    [22] Urbasch I. In vivo-investigations on the formation and function of chlamydospores of Botrytis cinerea Pers. in the host-parasite-system Fuchsia hybridaB. cinerea[J]. Journal of Phytopathology, 1986, 117(3):276-282(in German).
    [23] BARNES B. Variations in Botrytis cinerea, Pers. induced by the action of high temperatures[J]. Annals of Botany, 1930, 44(4):825-858.
    [24] 张艳杰, 沈凤英, 许换平, 李亚宁, 刘大群. 灰葡萄孢菌多样性研究进展[J]. 农业生物技术学报, 2017, 25(6):954-968.ZHANG YJ, SHEN FY, XU HP, LI YN, LIU DQ. Research advances in the diversity of Botrytis cinerea[J]. Journal of Agricultural Biotechnology, 2017, 25(6):954-968(in Chinese).
    [25] GARFINKEL AR. The history of Botrytis taxonomy, the rise of phylogenetics, and implications for species recognition[J]. Phytopathology, 2021, 111(3):437-454.
    [26] CHEUNG N, TIAN L, LIU XR, LI X. The destructive fungal pathogen Botrytis cinerea-insights from genes studied with mutant analysis[J]. Pathogens, 2020, 9(11):923.
    [27] 陈彩霞, 王泽昊, FENG Jie, 梁月. 植物病原真菌的菌核研究进展[J]. 微生物学通报, 2018, 45(12):2762-2768.CHEN CX, WANG ZH, FENG J, LIANG Y. Sclerotia of plant pathogenic fungi[J]. Microbiology China, 2018, 45(12):2762-2768(in Chinese).
    [28] YOUSEF-YOUSEF M, ROMERO-CONDE A, QUESADA-MORAGA E, GARRIDO-JURADO I. Production of microsclerotia by Metarhizium sp. and factors affecting their survival, germination, and conidial yield[J]. Journal of Fungi, 2022, 8(4):402.
    [29] KLIMES A, AMYOTTE SG, GRANT S, KANG S, DOBINSON KF. Microsclerotia development in Verticillium dahliae:regulation and differential expression of the hydrophobin gene VDH1[J]. Fungal Genetics and Biology, 2008, 45(12):1525-1532.
    [30] SHORT DPG, SANDOYA G, VA
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

白滨,文朝慧,何苏琴,柳利龙,张爱琴,王青. 灰葡萄孢菌引起的向日葵叶斑和盘腐及热胁迫对病菌菌核形成的影响[J]. 微生物学通报, 2024, 51(5): 1405-1424

复制
分享
文章指标
  • 点击次数:290
  • 下载次数: 619
  • HTML阅读次数: 397
  • 引用次数: 0
历史
  • 收稿日期:2024-03-20
  • 录用日期:2024-03-23
  • 在线发布日期: 2024-05-09
  • 出版日期: 2024-05-20
文章二维码