科微学术

微生物学通报

贝莱斯芽孢杆菌PJP10的抑菌物质稳定性及活性代谢产物挖掘
作者:
基金项目:

江西省现代农业产业技术体系项目(JXARS-3);江苏沿海地区农业科学研究所科研基金项目(YHS202213);江西农业大学大学生创新创业训练计划(X202310410317)


Stability evaluation and genome mining of antimicrobial metabolites of Bacillus velezensis PJP10
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】食源性致病菌在食品中易生长繁殖且致病性强,严重威胁着公共卫生和食品安全。【目的】通过多个指标分析贝莱斯芽孢杆菌(Bacillus velezensis) PJP10的抑菌物质稳定性,利用基因组测序预测编码抑菌活性相关酶和代谢产物合成蛋白的基因并检测酶和代谢产物的离体活性,为该菌工农业开发和应用提供参考数据。【方法】通过抑菌试验确定pH、温度、蛋白酶、金属离子、紫外线照射和盐浓度等因素对抑菌物质稳定性的影响。利用全基因组测序了解菌株PJP10潜在的产酶基因,并通过酶活试验检测其产酶能力。使用在线软件antiSMASH预测代谢产物合成基因簇,并利用酸沉淀法和乙酸乙酯萃取法获得无菌发酵液粗提物,通过高效液相色谱和抑菌试验初步探究菌株PJP10的胞外活性代谢产物成分。【结果】菌株PJP10无菌发酵液能够耐受强酸、强碱、高温、高盐和紫外线照射等环境,对蛋白酶K和胃蛋白酶不敏感,但对胰蛋白酶和金属离子敏感。全基因组中存在编码淀粉酶、氨肽酶、蛋白酶、几丁质酶、纤维素酶、酯酶、果胶酶、葡聚糖酶和酰胺酶等抑菌酶的基因,酶活测定结果表明该菌株具有蛋白酶、淀粉酶、纤维素酶和酯酶活性。antiSMASH预测发现菌株PJP10基因组中包含杆菌素(bacillaene)、地非西丁(difficidin)、大环内酰亚胺(macrolactin) H、表面活性素(surfactin)、杆菌霉素(bacillomycin) D、泛革素(fengycin)、溶杆菌素(bacilysin)、儿茶酚型铁载体(bacillibactin),以及解淀粉芽孢杆菌素(amylocyclicin)和植物唑霉素(plantazolicin)等多种活性代谢产物合成基因簇。此外,抑菌试验发现酸沉淀粗提物对沙门氏菌和大肠杆菌抑菌活性显著,对辣椒青枯菌无抑菌活性,乙酸乙酯粗提物对金黄色葡萄球菌和辣椒青枯菌抑菌活性显著,对沙门氏菌和大肠杆菌抑菌活性明显减弱,根据HPLC结果推测,菌株PJP10无菌发酵液中的抑菌物质可能是iturin、fengycin和surfactin这3个家族的成员。【结论】菌株PJP10抑菌物质稳定性良好,基因组中含有丰富的活性酶基因和活性代谢产物合成基因簇,在工农业生产领域具有较好的应用潜力。

    Abstract:

    [Background] Food-borne pathogens are easy to grow and reproduce in food and have high pathogenicity, posing critical threats to food safety and public health.[Objective] To analyze the antimicrobial stability of Bacillus velezensis PJP10 from multiple perspectives, discover the genes encoding antimicrobial enzymes and involved in the biosynthesis of antimicrobial substances by genome sequencing, and measure the in vitro activities of enzymes and active metabolites, so as to provide data for the application of this strain in industry and agriculture. [Methods] The microbial inhibition tests were carried out to examine the effects of pH, temperature, protease, metal ions, ultraviolet (UV), and salt concentration on the antimicrobial stability of the strain. The potential genes encoding antimicrobial enzymes of PJP10 were investigated by whole genome sequencing and the enzyme-producing abilities assessed by enzyme activity assays. The secondary metabolites of PJP10 were predicted by antiSMASH. HPLC and microbial inhibition tests were employed to analyze the components of the crude extract obtained by the acid precipitation and ethyl acetate extraction. [Results] The cell-free fermentation supernatant exhibited excellent stability at high temperatures, strong acid, strong alkali, high salt and UV, and was sensitive to trypsin and metal ions, but not proteinase K or pepsin. The genome of PJP10 carried abundant genes encoding amylase, aminopeptidase, protease, chitinase, cellulase, esterase, pectinase, glucanase, and amidase, and the strain could produce protease, amylase, cellulase, and esterase. The antiSMASH predicted that strain PJP10 had a variety of gene clusters for the synthesis of secondary metabolites, including bacillaene, difficidin, macrolactin H, surfactin, bacillomycin D, fengycin, bacilysin, bacillibactin, amylocyclicin, and plantazolicin. In addition, the extract obtained by acidification exhibited strong inhibitory activities against Salmonella enteritidis and Escherichia coli but no activity against Ralstonia solanacearum. The ethyl acetate extract showed strong inhibitory effects on Staphylococcus aureus and R. solanacearum and weak inhibitory effects on S. enteritidis and E. coli. According to HPLC results, we hypothesized that the antimicrobial substances in the cell-free supernatant of PJP10 were iturin, fengycin, and surfactin. [Conclusion] The strain PJP10 shows high antimicrobial stability and carries rich genes encoding active enzyme and abundant gene clusters for the synthesis of antimicrobial substances, demonstrating a promising prospect of application in industry and agriculture.

    参考文献
    [1] 马晓姣, 赵艳坤, 邵伟, 武亚婷, 李明, 刘慧敏, 孟璐, 陈贺. 新疆部分地区生乳中金黄色葡萄球菌的分离鉴定及耐药性分析[J]. 中国畜牧兽医, 2023, 50(2): 789-797. MA XJ, ZHAO YK, SHAO W, WU YT, LI M, LIU HM, MENG L, CHEN H. Isolation, identification and drug resistance analysis of Staphylococcus aureus in raw milk in some areas of Xinjiang[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(2): 789-797(in Chinese).
    [2] 张卯, 张业辉, 李惠, 肖性龙, 余以刚. 香茅醛对金黄色葡萄球菌的抑制作用[J]. 现代食品科技, 2023, 39(1): 120-126. ZHANG M, ZHANG YH, LI H, XIAO XL, YU YG. Antibacterial effect of citronellal against Staphylococcus aureus[J]. Modern Food Science & Technology, 2023, 39(1): 120-126(in Chinese).
    [3] AL BSHABSHE A, JOSEPH MRP, AWAD EL-GIED AA, FADUL AN, CHANDRAMOORTHY HC, HAMID ME. Clinical relevance and antimicrobial profiling of methicillin-resistant Staphylococcus aureus (MRSA) on routine antibiotics and ethanol extract of mango kernel (Mangifera indica L.)[J]. BioMed Research International, 2020: 1-8.
    [4] WYRES KL, HOLT KE. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria[J]. Current Opinion in Microbiology, 2018, 45: 131-139.
    [5] HASHEM A, TABASSUNM B, FATHI ABD_ALLAH E. Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress[J]. Saudi Journal of Biological Sciences, 2019, 26(6): 1291-1297.
    [6] RUIZ-GARCÍA C, BÉJAR V, MARTÍNEZ-CHECA F, LLAMAS I, QUESADA E. Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(1): 191-195.
    [7] FAN B, WANG C, SONG XF, DING XL, WU LM, WU HJ, GAO XW, BORRISS R. Bacillus velezensis FZB42 in 2018: the Gram-positive model strain for plant growth promotion and biocontrol[J]. Frontiers in Microbiology, 2018, 9: 1-14.
    [8] RABBEE MF, ALI MS, CHOI J, HWANG BS, JEONG SC, BAEK KH. Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes[J]. Molecules (Basel, Switzerland), 2019, 24(6): 1-13.
    [9] SUN XL, XU ZH, XIE JY, HESSELBERG-THOMSEN V, TAN TM, ZHENG DY, STRUBE ML, DRAGOŠ A, SHEN QR, ZHANG RF, KOVÁCS ÁT. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions[J]. The ISME Journal, 2022, 16(3): 774-787.
    [10] 张德锋, 高艳侠, 王亚军, 刘春, 石存斌. 贝莱斯芽孢杆菌的分类、拮抗功能及其应用研究进展[J]. 微生物学通报, 2020, 47(11): 3634-3649. ZHANG DF, GAO YX, WANG YJ, LIU C, SHI CB. Advances in taxonomy, antagonistic function and application of Bacillus velezensis[J]. Microbiology China, 2020, 47(11): 3634-3649(in Chinese).
    [11] ZHANG HP, XU GY, MAO CS, XU YX, DONG WL, INAM M, PAN SY, HU RG, WANG YM, WANG Y, MA HX, KONG LC. Characterization and complete genome analysis of Bacillus velezensis CB6 revealed ATP synthase subunit α against foodborne pathogens[J]. Archives of Microbiology, 2021, 203(3): 1061-1069.
    [12] NAM J, ALAM ST, KANG K, CHOI J, SEO MH. Anti-staphylococcal activity of a cyclic lipopeptide, C15-bacillomycin D, produced by Bacillus velezensis NST6[J]. Journal of Applied Microbiology, 2021, 131(1): 93-104.
    [13] 朱亚珠, 夏率博, 陈琳, 刘洋, 吴祖芳, 翁佩芳. 一株贝莱斯芽孢杆菌的生长特性及抑菌活性研究[J]. 食品科学技术学报, 2022, 40(1): 85-92. ZHU YZ, XIA LB, CHEN L, LIU Y, WU ZF, WENG PF. Study on growth characteristics and antimicrobial activities of Bacillus velezensis[J]. Journal of Food Science and Technology, 2022, 40(1): 85-92(in Chinese).
    [14] 娄向弟, 张向向, 贺江, 莫德钱, 王永慧, 熊建华, 郜彦彦. 一株贝莱斯芽孢杆菌的分离鉴定及其益生潜力评价[J]. 食品与发酵工业, 2023, 49(5): 143-150. LOU XD, ZHANG XX, HE J, MO DQ, WANG YH, XIONG JH, GAO YY. Isolation and identification of a Bacillus venezensis and its probiotic potential evaluation[J]. Food and Fermentation Industries, 2023, 49(5): 143-150(in Chinese).
    [15] ZHAO YY, JIANG TP, XU HY, XU GG, QIAN GL, LIU FQ. Characterization of Lysobacter spp. strains and their potential use as biocontrol agents against pear anthracnose[J]. Microbiological Research, 2021, 242: 1-9.
    [16] 卢美玉. 增塑剂邻苯二甲酸酯降解菌的分离、降解途径解析及其水解酶基因的克隆和酶学特性研究[D]. 南京: 南京农业大学硕士学位论文, 2019. LU MY. Isolation, degradation pathway analysis of plasticizer phthalate degrading bacteria, cloning and enzymatic characteristics of its hydrolase gene[D]. Nanjing: Master’s Thesis of Nanjing Agricultural University, 2019(in Chinese).
    [17] 钟春英, 肖长生, 齐小琼, 董桃杏. 一株具有广谱抑菌活性的兵马俑芽孢杆菌HS-15的筛选及其抑菌活性研究[J]. 华中师范大学学报(自然科学版), 2022, 56(2): 297-303, 362. ZHONG CY, XIAO CS, QI XQ, DONG TX. Screening of a broad-spectrum antimicrobial-producing strain Bacillus bingmayongensis HS-15 and study on its antimicrobial activity[J]. Journal of Central China Normal University (Natural Science Edition), 2022, 56(2): 297-303, 362(in Chinese).
    [18] 赵雅, 张岱, 杨志辉, 朱杰华, 赵冬梅, 薛雪. 贝莱斯芽孢杆菌HN-Q-8菌株发酵液稳定性及抑菌活性成分分析[J]. 微生物学通报, 2020, 47(2): 490-499. ZHAO Y, ZHANG D, YANG ZH, ZHU JH, ZHAO DM, XUE X. Determination of the stability of fermentation broth and analysis of active components of Bacillus velezensis HN-Q-8[J]. Microbiology China, 2020, 47(2): 490-499(in Chinese).
    [19] 张强, 张艳茹, 霍云凤, 韩阳超, 王朋, 陆宁海. 禾谷镰刀菌拮抗菌21-6的鉴定及其抑菌活性测定[J].微生物学通报, 2022, 49(10): 4144-4157. ZHANG Q, ZHANG YR, HUO YF, HAN YC, WANG P, LU NH. Identification and activity of Streptomyces sp. 21-6 against Fusarium graminearum[J]. Microbiology China, 2022, 49(10): 4144-4157(in Chinese).
    [20] 刘安, 赵华, 张朝正. 贝莱斯芽孢杆菌抑菌物质的分析及提取优化[J]. 中国酿造, 2019, 38(12): 63-68. LIU A, ZHAO H, ZHANG CZ. Analysis and extraction optimization of bacteriostatic substances from Bacillus velezensis[J]. China Brewing, 2019, 38(12): 63-68(in Chinese).
    [21] 兰宝锋, 王睿, 何双, 周礼芹, 蒙健宗. 解淀粉芽孢杆菌抑菌物质粗提取的优化及分析[J]. 中国酿造, 2022, 41(6): 195-199. LAN BF, WANG R, HE S, ZHOU LQ, MENG JZ. Optimization and analysis of crude extraction of bacteriostatic substances from Bacillus amyloliquefaciens[J]. China Brewing, 2022, 41(6): 195-199(in Chinese).
    [22] 刘雪娇, 李红亚, 李术娜, 朱宝成, 高同国. 贝莱斯芽孢杆菌3A3-15生防和促生机制[J]. 河北大学学报(自然科学版), 2019, 39(3): 302-310. LIU XJ, LI HY, LI SN, ZHU BC, GAO TG. Biocontrol and growth promotion mechanisms of Bacillus velezensis 3A3-15[J]. Journal of Hebei University (Natural Science Edition), 2019, 39(3): 302-310(in Chinese).
    [23] 王青华, 唐旭, 孙晓晖, 万婧倞, 黄仕新, 徐长安. 深海贝莱斯芽孢杆菌DH82的抑菌活性物质初步分离纯化及其抑菌谱检测[J]. 应用海洋学学报, 2020, 39(1): 20-26. WANG QH, TANG X, SUN XH, WAN JL, HUANG SX, XU CA. Purification of antimicrobial substance produced by deep sea Bacillus velezensis strain DH82 and its inhibition spectrum[J]. Journal of Applied Oceanography, 2020, 39(1): 20-26(in Chinese).
    [24] 方园, 彭勇政, 廖长贵, 陈路生, 周琦, 黄俭, 阎依超, 王慕媛, 张祎坤, 邹丽芳, 陈功友. 一株具有防病促生功能的贝莱斯芽孢杆菌SF327[J]. 微生物学报, 2022, 62(10): 4071-4088. FANG Y, PENG YZ, LIAO CG, CHEN LS, ZHOU Q, HUANG J, YAN YC, WANG MY, ZHANG YK, ZOU LF, CHEN GY. Bacillus velezensis SF327, a potential biocontrol agent with the functions of preventing plant diseases and promoting plant growth[J]. Acta Microbiologica Sinica, 2022, 62(10): 4071-4088(in Chinese).
    [25] ZHAO HB, SHAO DY, JIANG CM, SHI JL, LI Q, HUANG QS, RAJOKA MSR, YANG H, JIN ML. Biological activity of lipopeptides from Bacillus[J]. Applied Microbiology and Biotechnology, 2017, 101(15): 5951-5960.
    [26] REN ZH, XIE L, OKYERE SK, WEN J, RAN YN, NONG X, HU YC. Antibacterial activity of two metabolites isolated from endophytic bacteria Bacillus velezensis Ea73 in Ageratina adenophora[J]. Frontiers in Microbiology, 2022, 13: 1-14.
    [27] 邓丽, 孙冉, 姚蒋庞, 谢毓丹. 贝莱斯芽孢杆菌粗提物对金黄色葡萄球菌的抑菌机制[J]. 食品与发酵科技, 2021, 57(3): 1-9. DENG L, SUN R, YAO JP, XIE YD. Antibacterial mechanism of crude extract of Bacillus velezensis against Staphylococcus aureus[J]. Food and Fermentation Sciences & Technology, 2021, 57(3): 1-9(in Chinese).
    [28] YANG H, LI X, LI X, YU HM, SHEN ZY. Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC[J]. Analytical and Bioanalytical Chemistry, 2015, 407(9): 2529-2542.
    [29] LIN LZ, ZHENG QW, WEI T, ZHANG ZQ, ZHAO CF, ZHONG H, XU QY, LIN JF, GUO LQ. Isolation and characterization of fengycins produced by Bacillus amyloliquefaciens JFL21 and its broad-spectrum antimicrobial potential against multidrug-resistant foodborne pathogens[J]. Frontiers in Microbiology, 2020, 11: 1-18.
    [30] 李永丽, 周洲, 曲良建, 尹新明. 贝莱斯芽孢杆菌Pm9生物防治潜力及全基因组分析[J].河南农业大学学报, 2021, 55(6): 1081-1088. LI YL, ZHOU Z, QU LJ, YIN XM. Biological control potential and complete genome analysis of Bacillus velezensis Pm9[J]. Journal of Henan Agricultural University, 2021, 55(6): 1081-1088(in Chinese).
    [31] ADENIJI AA, LOOTS DT, BABALOLA OO. Bacillus velezensis: phylogeny, useful applications, and avenues for exploitation[J]. Applied Microbiology and Biotechnology, 2019, 103(9): 3669-3682.
    [32] CHEN L, HENG JY, QIN SY, BIAN K. A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight[J]. PLoS One, 2018, 13(6): e0198560.
    [33] FAZLE RABBEE M, BAEK KH. Antimicrobial activities of lipopeptides and polyketides of Bacillus velezensis for agricultural applications[J]. Molecules (Basel, Switzerland), 2020, 25(21): 1-16.
    [34] WAN CP, FAN XY, LOU ZX, WANG HX, OLATUNDE A, RENGASAMY KRR. Iturin: cyclic lipopeptide with multifunction biological potential[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(29): 7976-7988.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

娄向弟,周强,贺江,张向向,王永慧,熊建华,郜彦彦. 贝莱斯芽孢杆菌PJP10的抑菌物质稳定性及活性代谢产物挖掘[J]. 微生物学通报, 2024, 51(3): 935-949

复制
分享
文章指标
  • 点击次数:282
  • 下载次数: 696
  • HTML阅读次数: 402
  • 引用次数: 0
历史
  • 收稿日期:2023-08-31
  • 录用日期:2023-10-31
  • 在线发布日期: 2024-03-04
  • 出版日期: 2024-03-20
文章二维码