科微学术

微生物学通报

二氧化碳联合益生菌对猪肉中单增李斯特菌抑制模型的建立
作者:
基金项目:

陕西中医药大学博士科研启动基金(303-124020069);陕西省科技厅一般项目(2024JC-YBQN-0236)


Modeling for the inhibition of CO2 combined with probiotic on Listeria monocytogenes in pork
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】由单增李斯特菌导致的猪肉食用安全问题不仅给消费者带来极大的食用风险,也给食品加工业造成巨大的经济损失。加强对猪肉制品中单增李斯特菌致病力的控制可有效遏制社会公共卫生问题的发生。【目的】基于预测微生物学方法研究二氧化碳(CO2)联合植物乳杆菌(Lactobacillus plantarum) (CO2-LP)对猪肉中单增李斯特菌生长特性的影响,筛选出CO2-LP抑制单增李斯特菌生长的最优组合。【方法】应用Jameson-effect模型描述CO2-LP对猪肉中单增李斯特菌的抑制影响,并且分析该联合处理对单增李斯特菌生长动力学参数迟滞时间(λ)、最大比生长速率(μmax)和最大污染浓度(Nmax)的影响。【结果】构建的Jameson-effect模型能够很好地描述CO2-LP对单增李斯特菌的抑制作用。CO2-LP处理可延长单增李斯特菌的λ,同时降低μmaxNmax;并且CO2浓度越高,抑制作用越强。与对照组相比,80% CO2-LP处理可将猪肉中单增李斯特菌的λ延长0.87倍,μmax降低47%,Nmax降低2.05 lg (CFU/g)。虽然80% CO2-LP的抑菌效果最好,但考虑到需要在气调包装中充入N2以维持包装结构稳定,研究选择60% CO2-LP为最优组合。与对照组相比,60% CO2-LP可将单增李斯特菌的λ延长0.81倍,μmax降低33%,Nmax降低1.83 lg (CFU/g)。【结论】CO2-LP处理能够从不同方面抑制单增李斯特菌的生长,体现了栅栏技术的优势。

    Abstract:

    [Background] The pork safety problem caused by Listeria monocytogenes not only brings great consumption risks to consumers but also causes huge economic losses to the food processing industry. The virulence of Listeria monocytogenes in pork products should be controlled to curb the occurrence of public health events.[Objective] To explore the inhibitory effect of CO2 combined with the probiotic Lactobacillus plantarum (CO2-LP) on L. monocytogenes in pork by the method of predictive microbiology and determine the optimal combination of CO2-LP. [Methods] The Jameson-effect model was employed to establish the growth curves of L. monocytogenes in pork samples treated with CO2-LP, and the kinetic parameters including lag phase (λ), maximal growth rate (μmax), and maximum population density (Nmax) were determined. [Results] The inhibitory effect of CO2-LP was well fitted by the Jameson-effect model. CO2-LP treatment prolonged the λ and reduced the μmax and Nmax of L. monocytogenes. Moreover, the inhibitory effect of CO2-LP enhanced as the CO2 concentration increased. Compared with the control group, the 80% CO2-LP treatment increased the λ by 0.87 fold and decreased the μmaxand Nmax by 47% and 2.05 lg (CFU/g), respectively. Although 80% CO2-LP had the best inhibitory effect, the 60% CO2-LP was selected as the optimal treatment, because the presence of N2 could prevent pack collapse in modified atmosphere packaging. Compared with the control group, 60% CO2-LP treatment increased the λ by 0.81 fold and decreased the μmaxand Nmaxby 33% and 1.83 lg (CFU/g), respectively.[Conclusion] CO2-LP treatment inhibited the growth of L. monocytogenes in pork from different aspects, which reflected the advantages of hurdle technology.

    参考文献
    [1] 蒋慧亮, 邓英媖, 王正云, 朱永. 气调包装结合电子束辐照对蚌肉冰藏品质的影响[J]. 现代食品科技, 2023, 39(6): 115-123. JIANG HL, DENG YY, WANG ZY, ZHU Y. Effects of modified atmosphere packaging combined with electron beam irradiation on the quality of frozen mussel meat[J]. Modern Food Science and Technology, 2023, 39(6): 115-123(in Chinese).
    [2] 杜东晓, 赵龙妹, 李旺, 李元晓, 丁轲, 何万领, 曹平华. 具有优良抑菌特性乳酸菌的筛选鉴定及活性物质检测[J]. 微生物学通报, 2022, 49(8): 3165-3178. DU DX, ZHAO LM, LI W, LI YX, DING K, HE WL, CAO PH. Screening and identification of lactic acid bacteria with excellent antibacterial properties and detection of active substances[J]. Microbiology China, 2022, 49(8): 3165-3178(in Chinese).
    [3] MELERO B, VINUESA R, DIEZ A M, JAIMEI, ROVIR J. Application of protective cultures against Listeria monocytogenes and Campylobacter jejuni in chicken products packaged under modified atmosphere[J]. Poultry Science, 2013, 92(4): 1108-1116.
    [4] COSTA JCCP, BOVER-CID S, BOLÍVAR A, ZURERA G, PÉREZ-RODRÍGUEZ F. Modelling the interaction of the sakacin-producing Lactobacillus sakei CTC494 and Listeria monocytogenes in filleted gilthead sea bream (Sparus aurata) under modified atmosphere packaging at isothermal and non-isothermal conditions[J]. International Journal of Food Microbiology, 2019, 297: 72-84.
    [5] COUVERT O, GUÉGAN S, HÉZARD B, HUCHET V, LINTZ A, THUAULT D, STAHL V. Modeling carbon dioxide effect in a controlled atmosphere and its interactions with temperature and pH on the growth of L. monocytogenes and P. fluorescens[J]. Food Microbiology, 2017, 68: 89-96.
    [6] LISERRE AM, LANDGRAF M, DESTRO MT, FRANCO BDGM. Inhibition of Listeria monocytogenes by a bacteriocinogenic Lactobacillus sake strain in modified atmosphere packaged Brazilian sausage[J]. Meat Science, 2002, 61(4): 449-455.
    [7] BLANCO-LIZARAZO CM, SOTELO-DÍAZ I, LLORENTE-BOUSQUETS A. In vitro modelling of simultaneous interactions of Listeria monocytogenes,Lactobacillus sakei, and Staphylococcus carnosus[J]. Food Science and Biotechnology, 2016, 25(1): 341-348.
    [8] CHENG CS, LIU BX, TIAN ML, FANG T, LI CC. Application of interaction models in predicting the simultaneous growth of Staphylococcus aureus and different concentrations of background microbiota in Chinese-style braised beef[J]. Meat Science, 2023, 200: 109162.
    [9] LEROY F, LIEVENS K, de VUYST L. Modeling bacteriocin resistance and inactivation of Listeria innocua LMG 13568 by Lactobacillus sakei CTC 494 under sausage fermentation conditions[J]. Applied and Environmental Microbiology, 2005, 71(11): 7567-7570.
    [10] CHEN Q, ZHAO ZY, WANG XY, XIONG K, SHI C. Microbiological predictive modeling and risk analysis based on the one-step kinetic integrated Wiener process[J]. Innovative Food Science & Emerging Technologies, 2022, 75:102912.
    [11] BARANYI J, ROBERTS TA. A dynamic approach to predicting bacterial growth in food[J]. International Journal of Food Microbiology, 1994, 23(3/4): 277-294.
    [12] JAMESON JE. A discussion of the dynamics of salmonella enrichment[J]. Journal of Hygiene, 1962, 60(2): 193-207.
    [13] 刘阳泰, 孙菀霞, 刘宝林, 董庆利. 3种流通模式下生猪肉中单增李斯特菌的暴露评估[J]. 食品科学, 2019, 40(1): 85-91. LIU YT, SUN WX, LIU BL, DONG QL. Quantitative exposure assessment of Listeria monocytogenes in raw pork under three transportation modes[J]. Food Science, 2019, 40(1): 85-91(in Chinese).
    [14] MCMILLIN KW. Advancements in meat packaging[J]. Meat Science, 2017, 132: 153-162.
    [15] ZHOU GH, XU XL, LIU Y. Preservation technologies for fresh meat - a review[J]. Meat Science, 2010, 86(1): 119-128.
    [16] ARVANITOYANNIS IS, STRATAKOS AC. Application of modified atmosphere packaging and active/smart technologies to red meat and poultry: a review[J]. Food and Bioprocess Technology, 2012, 5(5): 1423-1446.
    [17] DJENANE D, MARTÍNEZ L, SÁNCHEZ-ESCALANTE A, MONTAÑÉS L, BLANCO D, YANGÜELA J, BELTRÁN JA, RONCALÉS P. Effect of lactic acid bacteria on beef steak microbial flora stored under modified atmosphere and on Listeria monocytogenes in broth cultures[J]. Food Science and Technology International, 2006, 12(4): 287-295.
    [18] BIANCHI F, STEWART C, ASTBURY NM, COOK B, AVEYARD P, JEBB SA. Replacing meat with alternative plant-based products (RE-MAP): a randomized controlled trial of a multicomponent behavioral intervention to reduce meat consumption[J]. The American Journal of Clinical Nutrition, 2022, 115(5): 1357-1366.
    [19] FRANCIS GA, O’BEIRNE D. Effects of the indigenous microflora of minimally processed lettuce on the survival and growth of Listeria innocua[J]. International Journal of Food Science & Technology, 1998, 33(5): 477-488.
    [20] VALÍK L, AČAI P, MEDVED’OVÁ A. Application of competitive models in predicting the simultaneous growth of Staphylococcus aureus and lactic acid bacteria in milk[J]. Food Control, 2018, 87: 145-152.
    [21] MEJLHOLM O, DALGAARD P. Modelling and predicting the simultaneous growth of Listeria monocytogenes and psychrotolerant lactic acid bacteria in processed seafood and mayonnaise-based seafood salads[J]. Food Microbiology, 2015, 46: 1-14.
    [22] BOLÍVAR A, TARLAK F, COSTA JCCP, CEJUDO-GÓMEZ M, BOVER-CID S, ZURERA G, PÉREZ-RODRÍGUEZ F. A new expanded modelling approach for investigating the bioprotective capacity of Latilactobacillus sakei CTC494 against Listeria monocytogenes in ready-to-eat fish products[J]. Food Research International, 2021, 147: 110545.
    [23] QUINTO EJ, MARÍN JM, CARO I, MATEO J, SCHAFFNER DW. Bayesian modeling of two- and three-species bacterial competition in milk[J]. Food Research International, 2018, 105: 952-961.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张文敏,董庆利,刘阳泰,辛宝,钱文文,任晓梅,马欣悦. 二氧化碳联合益生菌对猪肉中单增李斯特菌抑制模型的建立[J]. 微生物学通报, 2024, 51(3): 910-920

复制
分享
文章指标
  • 点击次数:218
  • 下载次数: 642
  • HTML阅读次数: 375
  • 引用次数: 0
历史
  • 收稿日期:2023-03-14
  • 录用日期:2023-06-21
  • 在线发布日期: 2024-03-04
  • 出版日期: 2024-03-20
文章二维码