科微学术

微生物学通报

苏云金芽胞杆菌LM1212菌株cry基因启动子的活性分析
作者:
基金项目:

国家自然科学基金(32072499);中国博士后科学基金(2021M693463)


Activity of cry gene promoter of Bacillus thuringiensis LM1212
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】前期发现一株具有独特分化表型的苏云金芽胞杆菌(Bacillus thuringiensis,Bt) LM1212,该菌株共有14种杀虫基因,组成了10个转录单元。利用源自菌株LM1212的晶体产生细胞调控因子(crystal producing cell regulator,CpcR)以及其可以激活的cry35-like基因启动子,已在典型Bt菌株HD73中成功构建了非芽胞杀虫蛋白表达体系。【目的】比较菌株LM1212的不同杀虫基因启动子的转录活性,明确可被转录因子CpcR激活的且转录活性较高的启动子,以此为基础优化非芽胞杀虫蛋白表达体系。【方法】将10个启动子区域分别与lacZ报告基因融合构建在pHT304-18Z载体上,得到了10个重组质粒;然后将cpcR基因及其启动子(PcpcR-cpcR)分别反向构建在选取的启动子区域与lacZ报告基因的上游,得到可以表达CpcR且与上述构建相对应的10个重组质粒,将这些重组质粒分别转入不含CpcR的菌株HD73,即获得20个可用于测定β-半乳糖苷酶活性的重组菌株。通过光学显微镜观察和SDS-PAGE检测明确杀虫蛋白表达的情况。【结果】在菌株HD73中,β-半乳糖苷酶活性检测结果显示,启动子P1、P3、P4、P5、P6、P7和P8转录均可被转录因子CpcR激活,启动子P10的转录受到转录因子CpcR抑制。在CpcR存在时,P7、P8启动子的转录活性相对较高。利用转录因子CpcR和P7、P8启动子成功表达了对草地贪夜蛾有较高杀虫活性的Vip3Aa11蛋白。【结论】筛选到的高转录活性的启动子可用于优化非芽胞杀虫蛋白表达体系,从而构建新型工程菌,为草地贪夜蛾的生物防治提供新思路。

    Abstract:

    [Background] Bacillus thuringiensis (Bt) LM1212 with a unique differentiation phenotype has been identified. It carries 14 insecticidal genes, which comprise 10 transcription units. With the crystal producing cell regulator (CpcR) derived from the LM1212 strain and the cry35-like gene promoter activated by CpcR, the non-sporulating expression system of insecticidal protein has been successfully established in the typical Bt strain HD73. [Objective] To compare the transcriptional activities of different insecticidal gene promoters of strain LM1212, identify the promoters with high transcriptional activity and activated by the transcription factor CpcR, and optimize the non-sporulating expression system. [Methods] Ten promoter regions were respectively fused with lacZ reporter gene on the pHT304-18Z vector, and 10 recombinant plasmids were obtained. The cpcR gene and its promoter (PcpcR-cpcR) were reversely integrated in the upstream region of each selected promoter region and the lacZ reporter gene, and 10 recombinant plasmids capable of expressing CpcR and corresponding to the above construction were obtained. Subsequently, these recombinant plasmids were separately transferred into the HD73 strain without CpcR, and thus 20 recombinant strains were obtained for the determination of β-galactosidase activity. The expression of insecticidal protein was determined by microscope observation and SDS-PAGE. [Results] In HD73 strain, the transcription of the promoters P1, P3, P4, P5, P6, P7, and P8 could be activated by CpcR, while that of the promoter P10 was inhibited by CpcR. In the presence of CpcR, P7 and P8 showed high transcriptional activities. Vip3Aa11 protein with strong activity against Spodoptera frugiperda was successfully expressed by CpcR combined with P7 and P8. [Conclusion] The screened promoter with high transcriptional activity can be used to optimize the non-sporulating expression system of insecticidal protein, so as to construct novel bacteria for the biocontrol of S. frugiperda.

    参考文献
    [1] HARRISON RD, THIERFELDER C, BAUDRON F, CHINWADA P, MIDEGA C, SCHAFFNER U, van den BERG J. Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management:providing low-cost, smallholder friendly solutions to an invasive pest[J]. Journal of Environmental Management, 2019, 243:318-330.
    [2] HUSSAIN AG, WENNMANN JT, GOERGEN G, BRYON A, ROS VID. Viruses of the fall armyworm Spodoptera frugiperda:a review with prospects for biological control[J]. Viruses, 2021, 13(11):2220.
    [3] MONTEZANO DG, SPECHT A, SOSA-GÓMEZ DR, ROQUE-SPECHT VF, SOUSA-SILVA JC, PAULA-MORAES SV, PETERSON JA, HUNT TE. Host plants of Spodoptera frugiperda (Lepidoptera:Noctuidae) in the Americas[J]. African Entomology, 2018, 26(2):286-300.
    [4] 张磊, 靳明辉, 张丹丹, 姜玉英, 刘杰, 吴孔明, 萧玉涛. 入侵云南草地贪夜蛾的分子鉴定[J]. 植物保护, 2019, 45(2):19-24, 56. ZHANG L, JIN MH, ZHANG DD, JIANG YY, LIU J, WU KM, XIAO YT. Molecular identification of invasive fall armyworm Spodoptera frugiperda in Yunnan Province[J]. Plant Protection, 2019, 45(2):19-24, 56(in Chinese).
    [5] 李国平, 姬婷婕, 孙小旭, 姜玉英, 吴孔明, 封洪强. 入侵云南草地贪夜蛾种群对5种常用Bt蛋白的敏感性评价[J]. 植物保护, 2019, 45(3):15-20. LI GP, JI TJ, SUN XX, JIANG YY, WU KM, FENG HQ. Susceptibility evaluation of invaded Spodoptera frugiperda population in Yunnan Province to five Bt proteins[J]. Plant Protection, 2019, 45(3):15-20(in Chinese).
    [6] WU QL, HE LM, SHEN XJ, JIANG YY, LIU J, HU G, WU KM. Estimation of the potential infestation area of newly-invaded fall armyworm Spodoptera frugiperda in the Yangtze River valley of China[J]. Insects, 2019, 10(9):298.
    [7] LI Y, WANG Z, ROMEIS J. Managing the invasive fall armyworm through biotech crops:a Chinese perspective[J]. Trends in Biotechnology, 2021, 39(2):105-107.
    [8] 吴超, 张磊, 廖重宇, 吴孔明, 萧玉涛. 草地贪夜蛾对化学农药和Bt作物的抗性机制及其治理技术研究进展[J]. 植物保护学报, 2019, 46(3):503-513. WU C, ZHANG L, LIAO CY, WU KM, XIAO YT. Research progress of resistance mechanism and management techniques of fall armyworm Spodoptera frugiperda to insecticides and Bt crops[J]. Journal of Plant Protection, 2019, 46(3):503-513(in Chinese).
    [9] 杨现明, 韩蕾, 赵胜园, 王兴亚, 姜玉英, 吴孔明. 麦田草地贪夜蛾农药防治技术研究[J]. 植物保护, 2020, 46(5):281-285, 315. YANG XM, HAN L, ZHAO SY, WANG XY, JIANG YY, WU KM. Insecticides applications for control of fall armyworm, Spodoptera frugiperda in wheat field[J]. Plant Protection, 2020, 46(5):281-285, 315(in Chinese).
    [10] LERECLUS D, AGAISSE H, GRANDVALET C, SALAMITOU S. Regulation of toxin and virulence gene transcription in Bacillus thuringiensis[J]. International Journal of Medical Microbiology, 2000, 290(4/5):295-299.
    [11] BERGAMASCO VB, MENDES DRP, FERNANDES OA, DESIDÉRIO JA, LEMOS MVF. Bacillus thuringiensis Cry1Ia10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp. (Lepidoptera)[J]. Journal of Invertebrate Pathology, 2013, 112(2):152-158.
    [12] 束长龙, 张贤, 王奎, 曹蓓蓓, 张杰. 几种常用化学杀虫剂对Bt菌株生长影响的初步研究[J]. 中国生物防治学报, 2022, 38(5):1166-1173. SHU CL, ZHANG X, WANG K, CAO BB, ZHANG J. A preliminary study on the effects of several frequently used chemical insecticides on the growth of diverse Bacillus thuringiensis strains[J]. Chinese Journal of Biological Control, 2022, 38(5):1166-1173(in Chinese).
    [13] 胡虓, 伍淼, 张晓明, 束长龙, 张杰, 马朋, 李青, 刘华梅. 高效苏云金杆菌KN11杀虫剂产品开发及应用[J]. 中国生物防治学报, 2020, 36(6):842-846. HU X, WU M, ZHANG XM, SHU CL, ZHANG J, MA P, LI Q, LIU HM. Development and application of efficient Bacillus thuringiensis KN11 insecticides[J]. Chinese Journal of Biological Control, 2020, 36(6):842-846(in Chinese).
    [14] 王宇航, 束长龙, 耿丽丽, 刘华梅, 张杰. 苏云金芽胞杆菌G033A产业化现状及应用前景分析[J]. 中国生物防治学报, 2020, 36(6):837-841. WANG YH, SHU CL, GENG LL, LIU HM, ZHANG J. Commercialization status and prospect analysis of Bacillus thuringiensis G033A product[J]. Chinese Journal of Biological Control, 2020, 36(6):837-841(in Chinese).
    [15] DENG C, SLAMTI L, RAYMOND B, LIU GM, LEMY C, GOMINET M, YANG JN, WANG HL, PENG Q, ZHANG J, LERECLUS D, SONG FP. Division of labour and terminal differentiation in a novel Bacillus thuringiensis strain[J]. The ISME Journal, 2015, 9(2):286-296.
    [16] HOU S, ZHANG RB, LERECLUS D, PENG Q, ZHANG J, SLAMTI L, SONG FP. The transcription factor CpcR determines cell fate by modulating the initiation of sporulation in Bacillus thuringiensis[J]. Applied and Environmental Microbiology, 2022, 88(6):e02374-21.
    [17] ZHANG RB, SLAMTI L, TONG L, VERPLAETSE E, MA LX, LEMY C, PENG Q, GUO SY, ZHANG J, SONG FP, LERECLUS D. The stationary phase regulator CpcR activates cry gene expression in non-sporulating cells of Bacillus thuringiensis[J]. Molecular Microbiology, 2020, 113(4):740-754.
    [18] 佟蕾, 张睿彬, 彭琦, 张杰, LERECLUS D, 宋福平. 苏云金芽胞杆菌LM1212菌株和突变株的全基因组序列比较分析[J]. 微生物学通报, 2020, 47(6):1888-1900. TONG L, ZHANG RB, PENG Q, ZHANG J, LERECLUS D, SONG FP. Comparative analysis of two complete genome sequences from Bacillus thuringiensis strain LM1212 and its mutant[J]. Microbiology China, 2020, 47(6):1888-1900(in Chinese).
    [19] YU XM, LIU T, SUN ZG, GUAN P, ZHU J, WANG SQ, LI SC, DENG QM, WANG LX, ZHENG AP, LI P. Co-expression and synergism analysis of Vip3Aa29 and Cyt2Aa3 insecticidal proteins from Bacillus thuringiensis[J]. Current Microbiology, 2012, 64(4):326-331.
    [20] LEMES ARN, DAVOLOS CC, LEGORI PCBC, FERNANDES OA, FERRÉ J, LEMOS MVF, DESIDERIO JA. Synergism and antagonism between Bacillus thuringiensis Vip3A and Cry1 proteins in Heliothis virescens, Diatraea saccharalis and Spodoptera frugiperda[J]. PLoS One, 2014, 9(9):e107196.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

程丹丹,张睿彬,冮丽丽,彭琦,宋福平. 苏云金芽胞杆菌LM1212菌株cry基因启动子的活性分析[J]. 微生物学通报, 2024, 51(2): 626-641

复制
分享
文章指标
  • 点击次数:147
  • 下载次数: 685
  • HTML阅读次数: 464
  • 引用次数: 0
历史
  • 收稿日期:2023-07-11
  • 录用日期:2023-08-14
  • 在线发布日期: 2024-01-23
  • 出版日期: 2024-02-20
文章二维码