科微学术

微生物学通报

细胞焦亡法破碎微生物细胞在合成生物学与代谢工程的应用
作者:
基金项目:

国家重点研发计划(2021YFC2103901)


Application of pyroptosis in the disruption of microbial cells in synthetic biology and metabolic engineering
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】细胞焦亡是一种细胞程序性死亡。在古菌和细菌中,gasdermin同源蛋白(GSDM)能够被特定的活化caspase (protease)酶切,从而激活类似于细胞焦亡的效应,产生细胞破碎效果。【目的】合成生物学、代谢工程和生物制造等应用过程中,细胞破碎是不可或缺的一步。利用细胞焦亡法破碎细胞取代传统的破碎方法,可以简化操作、提高生产效益。【方法】在大肠杆菌(Escherichia coli) BW25113中共表达protease和不同来源的GSDM,选择有明显细胞焦亡效应即来源Runella sp.的GSDM进行蛋白截短改造,使其在诱导表达蛋白截短体GSDMJD后能直接激活细胞焦亡效应。对GSDMJD进行过表达优化,获得可控大肠杆菌细胞焦亡菌株。进一步以重组表达蔗糖磷酸化酶为研究模型,验证本系统应用于细胞破碎释放蛋白的效果。【结果】实现了大肠杆菌中细胞焦亡的人为可控。焦亡菌株在诱导表达焦亡相关蛋白2 h后大肠杆菌细胞破碎死亡,内容物释放。将上述系统和超声法应用于制备蔗糖磷酸化酶粗酶液,细胞焦亡法制备的粗酶液的相对酶活显著高于超声法制备的粗酶液。在制备粗酶液的菌液OD600值为2.0时,细胞焦亡法制备的粗酶液相对酶活最高并且相较于超声法制备粗酶液,提高了60%的相对酶活。【结论】细胞焦亡提供了一种更加简单快捷、绿色环保的微生物细胞破碎方式,为合成生物学与代谢工程的发展奠定了基础。

    Abstract:

    [Background] Pyroptosis is a form of programmed cell death. Gasdermin (GSDM) can be cleaved by cysteinyl aspartate-specific caspase (protease) in archaea and bacteria, which results in cell disruption, similar to the effects of pyroptosis in eukaryotes.[Objective] Cell disruption is a crucial step in synthetic biology, metabolic engineering, and biomanufacturing. Utilizing pyroptosis as a cell disruption method can simplify the operation and improve the production efficiency compared with the conventional methods.[Methods] Protease and GSDM from different sources were co-expressed in Escherichia coli BW25113. The GSDM with obvious pyroptosis effect from Runella sp. was selected for protein truncation, so that it could directly activate pyroptosis effect after inducing the expression of truncated protein (GSDMJD). After overexpression of GSDMJD and optimization, an E. coli strain with controllable pyroptosis effect was obtained. Furthermore, sucrose phosphorylase was used to verify the effects of this system and ultrasonic disruption on enzyme activity. [Results] The regulation of pyroptosis was successfully implemented in E. coli. After the strain was induced to express the pyroptosis-related protein for 2 h, the cells were disrupted and released the contents. The above system and ultrasonic method were applied to the preparation of crude liquid of sucrose phosphorylase. The relative activity of crude enzyme liquid prepared by the pyroptosis method was significantly higher than that of crude enzyme liquid prepared by the ultrasonic method. In the case of OD600 2.0, the crude enzyme liquid prepared by the pyroptosis method had the highest enzyme activity, which increased by 60% compared with that of the crude enzyme liquid prepared by the ultrasonic method. [Conclusion] Pyroptosis serves as a simple, fast, and environmentally friendly method for microbial cell disruption, laying a foundation for the development of synthetic biology and metabolic engineering.

    参考文献
    [1] LIU X, XIA SY, ZHANG ZB, WU H, LIEBERMAN J. Channelling inflammation:gasdermins in physiology and disease[J]. Nature Reviews Drug Discovery, 2021, 20(5):384-405.
    [2] 王锐, 付萍. 细胞焦亡的发生机制研究[J]. 医学信息, 2021, 34(11):43-46. WANG R, FU P. Study on the mechanism of pyroptosis[J]. Medical Information, 2021, 34(11):43-46(in Chinese).
    [3] 胡颖超, 杨硕. 细胞焦亡的研究进展[J]. 南京医科大学学报(自然科学版), 2021, 41(8):1245-1251. HU YC, YANG S. Research progress on pyroptosis[J]. Journal of Nanjing Medical University (Natural Sciences Edition), 2021, 41(8):1245-1251(in Chinese).
    [4] LIU X, ZHANG ZB, RUAN JB, PAN YD, MAGUPALLI VG, WU H, LIEBERMAN J. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J]. Nature, 2016, 535(7610):153-158.
    [5] SHI JJ, ZHAO Y, WANG K, SHI XY, WANG Y, HUANG HW, ZHUANG YH, CAI T, WANG FC, SHAO F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015, 526(7575):660-665.
    [6] DORON S, MELAMED S, OFIR G, LEAVITT A, LOPATINA A, MAI KR, AMITAI G, SOREK R. Systematic discovery of antiphage defense systems in the microbial pangenome[J]. Science, 2018, 359(6379):eaar4120.
    [7] JOHNSON AG, WEIN T, MAYER ML, DUNCAN-LOWEY B, YIRMIYA E, OPPENHEIMER-SHAANAN Y, AMITAI G, SOREK R, KRANZUSCH PJ. Bacterial gasdermins reveal an ancient mechanism of cell death[J]. Science, 2022, 375(6577):221-225.
    [8] SLEATOR RD. Synthetic biology:from mainstream to counterculture[J]. Archives of Microbiology, 2016, 198(7):711-713.
    [9] 陈涛, 崔真真, 户文亚, 王智文, 赵学明. 代谢工程发展30年[J]. 生物工程学报, 2021, 37(5):1477-1493. CHEN T, CUI ZZ, HU WY, WANG ZW, ZHAO XM. Thirty years development of metabolic engineering:a review[J]. Chinese Journal of Biotechnology, 2021, 37(5):1477-1493(in Chinese).
    [10] 严伟, 信丰学, 董维亮, 周杰, 章文明, 姜岷. 合成生物学及其研究进展[J]. 生物学杂志, 2020, 37(5):1-9. YAN W, XIN FX, DONG WL, ZHOU J, ZHANG WM, JIANG M. Synthetic biology and research progress[J]. Journal of Biology, 2020, 37(5):1-9(in Chinese).
    [11] HASHEMI A. CRISPR-Cas9/CRISPRi tools for cell factory construction in E. coli[J]. World Journal of Microbiology and Biotechnology, 2020, 36(7):96.
    [12] 吴蕾, 洪建辉, 甘一如, 张瑛. 高压匀浆破碎释放重组大肠杆菌提取包含体过程的研究[J]. 高校化学工程学报, 2001, 15(2):191-194. WU L, HONG JH, GAN YR, ZHANG Y. Study on recombinant E. coli by disruption in a high pressure homogenizer[J]. Journal of Chemical Engineering of Chinese Universities, 2001, 15(2):191-194(in Chinese).
    [13] 姚洪文, 范玉梅, 郭素格. 纳米级微生物细胞破碎机在酱油生产中的应用[J]. 中国酿造, 2005, 24(5):30-34. YAO HW, FAN YM, GUO SG. Application of nanometer grade microorganism cell crushing machine in soy sauce production[J]. China Brewing, 2005, 24(5):30-34(in Chinese).
    [14] GUREVICH GA, FIKHTE BA, USHAKOV VM. Microbial cell breakdown for use in research, food, drugs etc. mfr.[P]. SU626118-A, 1978-09-25.
    [15] WU T, JIANG Q, WU D, HU Y, CHEN SG, DING T, YE XQ, LIU DH, CHEN JCl. What is new in lysozyme research and its application in food industry? a review[J]. Food Chemistry, 2019, 274:698-709.
    [16] ZHOU W, WU SL, ZHAO YY, ZHANG H, CUI ZK. Microorganism cell breaker comprises crushing box body comprising base and crushing chamber provided with cell crushing component comprising ultrasonic vibration component and cell crushing groove rotatably connected with base[P]. CN214991557-U, 2021-12-03.
    [17] 张红, 林金连, 胡定行, 刘贵友, 孙磊. 大肠杆菌高密度发酵表达4-羟基苯乙酸酯3-羟化酶及咖啡酸的高效生物合成[J]. 生物工程学报, 2022, 38(9):3466-3477. ZHANG H, LIN JL, HU DH, LIU GY, SUN L. High-density fermentation of Escherichia coli to express 4-hydroxyphenylacetate 3-hydroxylase and efficient biosynthesis of caffeic acid[J]. Chinese Journal of Biotechnology, 2022, 38(9):3466-3477(in Chinese).
    [18] WANG L, ZHENG P, HU MR, TAO Y. Inorganic phosphate self-sufficient whole-cell biocatalysts containing two co-expressed phosphorylases facilitate cellobiose production[J]. Journal of Industrial Microbiology and Biotechnology, 2022, 49(3):kuac008.
    [19] MEARLS EB, OLSON DG, HERRING CD, LYND LR. Development of a regulatable plasmid-based gene expression system for Clostridium thermocellum[J]. Applied Microbiology and Biotechnology, 2015, 99(18):7589-7599.
    [20] CZERWIŃSKA-GŁÓWKA D, KRUKIEWICZ K. Guidelines for a morphometric analysis of prokaryotic and eukaryotic cells by scanning electron microscopy[J]. Cells, 2021, 10(12):3304.
    [21] 苏梦缘, 伍新叶, 朱曦, 王茜瑛, 邵嫄, 李克克, 梁运祥, 李英俊. 微生态制剂活菌的计数方法分析[J]. 中南农业科技, 2022(3):139-143. SU MY, WU XY, ZHU X, WANG XY, SHAO Y, LI KK, LIANG YX, LI Y. Analysis of counting method of viable bacteria in microecological preparations[J]. South-Central Agricultural Science and Technology, 2022(3):139-143(in Chinese).
    [22] 常胜合, 舒海燕, 秦广雍, 李宗伟, 李宗义, 王雁萍, 杨天佑, 陈林海. 凝胶电泳蛋白质染色方法研究进展[J]. 河南农业科学, 2006, 35(5):8-12. CHANG SH, SHU HY, QIN GY, LI ZW, LI ZY, WANG YP, YANG TY, CHEN LH. Advances in methods of protein bands staining on SDS-PAGE[J]. Journal of Henan Agricultural Sciences, 2006, 35(5):8-12(in Chinese).
    [23] 陈显玲, 宋连萍, 周燕妮, 王海芳, 谭夏云, 苏龙. 蔗糖磷酸化酶产生菌的筛选及其催化合成α-熊果苷条件优化[J]. 中国酿造, 2022, 41(3):117-124. CHEN XL, SONG LP, ZHOU YN, WANG HF, TAN XY, SU L. Screening of sucrose phosphorylase producing strain and enzymatic synthesis conditions optimization of α-arbutin[J]. China Brewing, 2022, 41(3):117-124(in Chinese).
    [24] 杨林莉, 夏媛媛, 陈献忠. 蔗糖磷酸化酶的研究进展[J]. 微生物学通报, 2021, 48(12):4904-4917. YANG LL, XIA YY, CHEN XZ. Research progress on sucrose phosphorylase[J]. Microbiology China, 2021, 48(12):4904-4917(in Chinese).
    [25] Zhang YB, LIU XY, WANG YF, JIANG PP, QUEK SY. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus[J]. Food Control, 2016, 59:282-289.
    相似文献
    引证文献
引用本文

王成林,刘伟丰,陶勇,刘波. 细胞焦亡法破碎微生物细胞在合成生物学与代谢工程的应用[J]. 微生物学通报, 2024, 51(1): 340-353

复制
分享
文章指标
  • 点击次数:195
  • 下载次数: 740
  • HTML阅读次数: 462
  • 引用次数: 0
历史
  • 收稿日期:2023-03-13
  • 录用日期:2023-05-08
  • 在线发布日期: 2024-01-02
  • 出版日期: 2024-01-20
文章二维码