科微学术

微生物学通报

抗菌药对鲍曼不动杆菌外膜囊泡产量及主要生物学特性的影响
作者:
基金项目:

国家自然科学基金(32102728);江苏省农业科学院探索性颠覆性创新项目[ZX(21)1224]


Antimicrobials affect the production and characteristics of outer membrane vesicles of Acinetobacter baumannii
Author:
  • LI Qianru

    LI Qianru

    School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China;Key Laboratory of Agro-product Safety Risk Evaluation (Nanjing) of Ministry of Agriculture and Rural Affairs, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HE Tao

    HE Tao

    Key Laboratory of Agro-product Safety Risk Evaluation (Nanjing) of Ministry of Agriculture and Rural Affairs, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JI Xing

    JI Xing

    Key Laboratory of Agro-product Safety Risk Evaluation (Nanjing) of Ministry of Agriculture and Rural Affairs, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WEI Ruicheng

    WEI Ruicheng

    Key Laboratory of Agro-product Safety Risk Evaluation (Nanjing) of Ministry of Agriculture and Rural Affairs, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Ran

    WANG Ran

    Key Laboratory of Agro-product Safety Risk Evaluation (Nanjing) of Ministry of Agriculture and Rural Affairs, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YU Meiling

    YU Meiling

    School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Jun

    LI Jun

    Key Laboratory of Agro-product Safety Risk Evaluation (Nanjing) of Ministry of Agriculture and Rural Affairs, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】细菌耐药性已成为全球健康卫生和经济发展的巨大威胁。替加环素是治疗多重耐药肠杆菌所致严重感染的主要药物之一,但在2019年发现了可介导其高水平耐药的可转移替加环素耐药基因tet(X3)。外膜囊泡作为介导水平基因转移的新型方式,在介导tet(X3)水平转移中的作用目前尚无报道。【目的】以tet(X3)阳性替加环素耐药鲍曼不动杆菌34AB为对象,探究不同抗菌药物对其外膜囊泡产量及主要生物学特性的影响。【方法】采用微量肉汤稀释法测定细菌药物敏感性,超速离心法提取细菌外膜囊泡,BCA法测定外膜囊泡产量,使用马尔文纳米粒度电位仪测定外膜囊泡的粒径与电位,PCR法(定性)及RT-qPCR法(定量)检测外膜囊泡中携带的tet(X3)基因。【结果】相较于无抗生素对照组[(0.64±0.04) mg/mL],在不同抗菌药物亚抑菌浓度(1/2 MIC和1/4 MIC)处理后,34AB外膜囊泡的产量均有所增加,以头孢他啶[1/2 MIC,(2.83±0.57) mg/mL;1/4 MIC,(2.38±0.29) mg/mL]和美罗培南[1/2 MIC,(2.19±0.11) mg/mL;1/4 MIC,(1.96±0.37) mg/mL]作用最为显著(p<0.01)。同时抗菌药物作用后,各组外膜囊泡粒径和电位均有所降低,而携带的tet(X3)基因拷贝数均有所上升(2.80×104-2.63×107copies/μL)。【结论】抗菌药物的临床应用可能会导致耐药细菌外膜囊泡产量及携带的耐药基因丰度增加,进而增强其作为水平基因转移载体传播耐药基因的风险。

    Abstract:

    [Background] Antimicrobial resistance poses a huge threat to global health and economic development. Tigecycline is one of the important drugs for treating severe infections caused by multidrug-resistant Enterobacteriaceae. However, the mobile resistance gene tet(X3), which could mediate high-level tigecycline resistance, was discovered in 2019. Outer membrane vesicles have been recognized as a new route for horizontal gene transfer, while little is known about the role of outer membrane vesicles in the disseminating of tet(X3). [Objective] To investigate the effects of different antimicrobials on the production and characteristics of outer membrane vesicles of tet(X3)-positive tigecycline-resistant Acinetobacter baumannii strain 34AB. [Methods] The antimicrobial susceptibility was determined by the broth micro-dilution method. The bacterial outer membrane vesicles were extracted by ultracentrifugation. The protein concentration of the outer membrane vesicles was determined by the BCA method, and the size and potential tested by Zeta-sizer nano-ZS. The copy number of tet(X3) within the outer membrane vesicles was determined by RT-qPCR. [Results] Compared with the control group without antibiotic treatment [(0.64±0.04) mg/mL], antimicrobials at 1/2 MIC or 1/4 MIC increased the production of outer membrane vesicles, with the effects of ceftazidime [1/2 MIC, (2.83±0.57) mg/mL; 1/4 MIC, (2.38±0.29) mg/mL] and meropenem [1/2 MIC, (2.19±0.11) mg/mL; 1/4 MIC, (1.96±0.37) mg/mL] being the most significant (P<0.01). Meanwhile, the antimicrobial treatments decreased the size and potential of outer membrane vesicles and increased the copy number of tet(X3) (2.80×104-2.63×107copies/μL). [Conclusion] The clinical application of antimicrobials may increase the production and the antimicrobial resistance gene abundance of outer membrane vesicles, thereby increasing the risk of them as vectors for disseminating of antimicrobial resistance genes.

    参考文献
    [1] MCALLISTER TA, WANG YX, DIARRA MS, ALEXANDER T, STANFORD K. Challenges of a one-health approach to the development of alternatives to antibiotics[J]. Animal Frontiers, 2018, 8(2):10-20.
    [2] HE T, WANG R, LIU DJ, WALSH TR, ZHANG R, LÜ Y, KE YB, JI QJ, WEI RC, LIU ZH, SHEN YB, WANG G, SUN LC, LEI L, LÜ ZQ, LI Y, PANG MD, WANG LY, SUN QL, FU YL, et al. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans[J]. Nature Microbiology, 2019, 4(9):1450-1456.
    [3] SUN J, CHEN C, CUI CY, ZHANG Y, LIU X, CUI ZH, MA XY, FENG YJ, FANG LX, LIAN XL, ZHANG RM, TANG YZ, ZHANG KX, LIU HM, ZHUANG ZH, ZHOU SD, LÜ JN, DU H, HUANG B, YU FY, et al. Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli[J]. Nature Microbiology, 2019, 4(9):1457-1464.
    [4] LIU YY, WANG Y, WALSH TR, YI LX, ZHANG R, SPENCER J, DOI Y, TIAN GB, DONG BL, HUANG XH, YU LF, GU DX, REN HW, CHEN XJ, LÜ LC, HE DD, ZHOU HW, LIANG ZS, LIU JH, SHEN JZ. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China:a microbiological and molecular biological study[J]. The Lancet Infectious Diseases, 2016, 16(2):161-168.
    [5] WALSH TR, WEEKS J, LIVERMORE DM, TOLEMAN MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health:an environmental point prevalence study[J]. The Lancet Infectious Diseases, 2011, 11(5):355-362.
    [6] YAGHOUBI S, ZEKIY AO, KRUTOVA M, GHOLAMI M, KOUHSARI E, SHOLEH M, GHAFOURI Z, MALEKI F. Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance:narrative review[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2022, 41(7):1003-1022.
    [7] MUNITA JM, ARIAS CA. Mechanisms of antibiotic resistance[J]. Microbiology Spectrum, 2016, 4(2):VMBF-0016-2015.
    [8] DAVIES J, DAVIES D. Origins and evolution of antibiotic resistance[J]. Microbiology and Molecular Biology Reviews, 2010, 74(3):417-433.
    [9] ARNOLD BJ, HUANG IT, HANAGE WP. Horizontal gene transfer and adaptive evolution in bacteria[J]. Nature Reviews Microbiology, 2022, 20(4):206-218.
    [10] SOUCY SM, HUANG JL, GOGARTEN JP. Horizontal gene transfer:building the web of life[J]. Nature Reviews Genetics, 2015, 16(8):472-482.
    [11] DELL'ANNUNZIATA F, FOLLIERO V, GIUGLIANO R, de FILIPPIS A, SANTARCANGELO C, IZZO V, DAGLIA M, GALDIERO M, ARCIOLA CR, FRANCI G. Gene transfer potential of outer membrane vesicles of Gram-negative bacteria[J]. International Journal of Molecular Sciences, 2021, 22(11):5985.
    [12] TOYOFUKU M, NOMURA N, EBERL L. Types and origins of bacterial membrane vesicles[J]. Nature Reviews Microbiology, 2019, 17(1):13-24.
    [13] RUMBO C, FERNÁNDEZ-MOREIRA E, MERINO M, POZA M, MENDEZ JA, SOARES NC, MOSQUERA A, CHAVES F, BOU G. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles:a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(7):3084-3090.
    [14] CHATTERJEE S, MONDAL A, MITRA S, BASU S. Acinetobacter baumannii transfers the blaNDM-1 gene via outer membrane vesicles[J]. Journal of Antimicrobial Chemotherapy, 2017, 72(8):2201-2207.
    [15] BIELASZEWSKA M, DANIEL O, KARCH H, MELLMANN A. Dissemination of the blaCTX-M-15 gene among Enterobacteriaceae via outer membrane vesicles[J]. The Journal of Antimicrobial Chemotherapy, 2020, 75(9):2442-2451.
    [16] 杨逸, 刘洋名, 魏亚鹿, 张正越, 秦金红, 蔡慕枫. 抗生素诱导革兰阴性菌外膜囊泡产生及发挥生理作用的机制[J]. 微生物与感染, 2022, 17(2):94-101. YANG Y, LIU YM, WEI YL, ZHANG ZY, QIN JH, CAI MF. Biogenesis and physiological functions of outer membrane vesicles triggered by antibiotics in gram-negative bacteria[J]. Journal of Microbes and Infections, 2022, 17(2):94-101(in Chinese).
    [17] BAUWENS A, KUNSMANN L, KARCH H, MELLMANN A, BIELASZEWSKA M. Antibiotic-mediated modulations of outer membrane vesicles in enterohemorrhagic Escherichia coli O104:H4 and O157:H7[J]. Antimicrobial Agents and Chemotherapy, 2017, 61(9):e00937-17.
    [18] YUN SH, PARK EC, LEE SY, LEE H, CHOI CW, YI YS, RO HJ, LEE JC, JUN SM, KIM HY, KIM GH, KIM SI. Antibiotic treatment modulates protein components of cytotoxic outer membrane vesicles of multidrug-resistant clinical strain, Acinetobacter baumannii DU202[J]. Clinical Proteomics, 2018, 15(1):1-11.
    [19] KIM MH, KIM SY, SON JH, KIM SI, LEE H, KIM S, SHIN M, LEE JC. Production of membrane vesicles by Enterococcus faecium cultured with or without subinhibitory concentrations of antibiotics and their pathological effects on epithelial cells[J]. Frontiers in Cellular and Infection Microbiology, 2019, 9:295.
    [20] DEVOS S, van PUTTE W, VITSE J, van DRIESSCHE G, STREMERSCH S, van den BROEK W, RAEMDONCK K, BRAECKMANS K, STAHLBERG H, KUDRYASHEV M, SAVVIDES SN, DEVREESE B. Membrane vesicle secretion and prophage induction in multidrug-resistant Stenotrophomonas maltophilia in response to ciprofloxacin stress[J]. Environmental Microbiology, 2017, 19(10):3930-3937.
    [21] CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals[S]. Clinical and Laboratory Standard Institute, 2015.
    [22] LEE CR, LEE JH, PARK M, PARK KS, BAE IK, KIM YB, CHA CJ, JEONG BC, LEE SH. Biology of Acinetobacter baumannii:pathogenesis, antibiotic resistance mechanisms, and prospective treatment options[J]. Frontiers in Cellular and Infection Microbiology, 2017, 7:55.
    [23] SUN CL, YU YS, HUA XT. Resistance mechanisms of tigecycline in Acinetobacter baumannii[J]. Frontiers in Cellular and Infection Microbiology, 2023, 13:1141490.
    [24] MOON DC, CHOI CH, LEE JH, CHOI CW, KIM HY, PARK JS, KIM SI, LEE JC. Acinetobacter baumannii outer membrane protein a modulates the biogenesis of outer membrane vesicles[J]. The Journal of Microbiology, 2012, 50(1):155-160.
    [25] JHA C, GHOSH S, GAUTAM V, MALHOTRA P, RYA P. In vitro study of virulence potential of Acinetobacter baumannii outer membrane vesicles[J]. Microbial Pathogenesis, 2017, 111:218-224.
    [26] KWON SO, GHO YS, LEE JC, KIM SI. Proteome analysis of outer membrane vesicles from a clinical Acinetobacter baumannii isolate[J]. FEMS Microbiology Letters, 2009, 297(2):150-156.
    [27] 张佳星, 何云燕, 孔春欢, 高睿. 鲍曼不动杆菌外膜囊泡的提取、纯化及活性检测[J]. 重庆医学, 2017, 46(28):3968-3970. ZHANG JX, HE YY, KONG CH, GAO R. Extraction, purification and activity assay of outer membrane vesicles of Acinetobacter baumannii[J]. Chongqing Medicine, 2017, 46(28):3968-3970(in Chinese).
    [28] DHURVE G, MADIKONDA AK, JAGANNADHAM MV, SIDDAVATTAM D. Outer membrane vesicles of Acinetobacter baumannii DS002 are selectively enriched with TonB-dependent transporters and play a key role in iron acquisition[J]. Microbiology Spectrum, 2022, 10(2):e0029322.
    [29] KADURUGAMUWA JL, BEVERIDGE TJ. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin:a novel mechanism of enzyme secretion[J]. Journal of Bacteriology, 1995, 177(14):3998-4008.
    [30] JASIM R, HAN ML, ZHU Y, HU XH, HUSSEIN M, LIN YW, ZHOU QT, DONG C, LI J, VELKOV T. Lipidomic analysis of the outer membrane vesicles from paired polymyxin-susceptible and -resistant Klebsiella pneumoniae clinical isolates[J]. International Journal of Molecular Sciences, 2018, 19(8):2356.
    [31] HUSSEIN M, JASIM R, GOCOL H, BAKER M, THOMBARE VJ, ZIOGAS J, PUROHIT A, RAO GG, LI J, VELKOV T. Comparative proteomics of outer membrane vesicles from polymyxin-susceptible and extremely drug-resistant Klebsiella pneumoniae[J]. mSphere, 2023, 8(1):e0053722.
    [32] TOYOFUKU M, CÁRCAMO-OYARCE G, YAMAMOTO T, EISENSTEIN F, HSIAO CC, KUROSAWA M, GADEMANN K, PILHOFER M, NOMURA N, EBERL L. Prophage-triggered membrane vesicle formation through peptidoglycan damage in Bacillus subtilis[J]. Nature Communications, 2017, 8:481.
    [33] KHARINA A, PODOLICH O, FAIDIUK I, ZAIKA S, HAIDAK A, KUKHARENKO O, ZAETS I, TOVKACH F, REVA O, KREMENSKOY M, KOZYROVSKA N. Temperate bacteriophages collected by outer membrane vesicles in Komagataeibacter intermedius[J]. Journal of Basic Microbiology, 2015, 55(4):509-513.
    [34] CRISPIM JS, DIAS RS, LAGUARDIA CN, ARAÚJO LC, da SILVA JD, VIDIGAL PMP, de SOUSA MP, da SILVA CC, SANTANA MF, de PAULA SO. Desulfovibrio alaskensis prophages and their possible involvement in the horizontal transfer of genes by outer membrane vesicles[J]. Gene, 2019, 703:50-57.
    [35] LI P, LUO WY, XIANG TX, JIANG YH, LIU P, WEI DD, FAN LP, HUANG SS, LIAO WJ, LIU Y, ZHANG W. Horizontal gene transfer via OMVs co-carrying virulence and antimicrobial-resistant genes is a novel way for the dissemination of carbapenem-resistant hypervirulent Klebsiella pneumoniae[J]. Frontiers in Microbiology, 2022, 13:945972.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李倩茹,何涛,吉星,魏瑞成,王冉,于美玲,李俊. 抗菌药对鲍曼不动杆菌外膜囊泡产量及主要生物学特性的影响[J]. 微生物学通报, 2024, 51(1): 295-305

复制
分享
文章指标
  • 点击次数:209
  • 下载次数: 802
  • HTML阅读次数: 413
  • 引用次数: 0
历史
  • 收稿日期:2023-06-27
  • 录用日期:2023-07-19
  • 在线发布日期: 2024-01-02
  • 出版日期: 2024-01-20
文章二维码