科微学术

微生物学通报

芽孢杆菌WL911促低温下小麦生长效应及其功能基因分析
作者:
基金项目:

新疆西甜瓜产业技术体系(XJARS-06);国家自然科学基金(31260419)


Bacillus WL911: wheat growth-promoting effects under low temperature and functional genes
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】青藏高原特殊生境孕育着强耐逆性的微生物资源。【目的】探究青藏高原特殊生境的芽孢杆菌对小麦的促生效应。【方法】以分离自青海省海西蒙古族藏族自治州乌兰县的红柳(Tamarix ramosissima)根围菌株WL911为研究对象进行16S rRNA基因及gyrB基因鉴定;测定其低温适生性;以WL911菌悬液(浓度为1×107 cfu/mL)对4℃条件下的小麦(Triticum aestivum)品种“青麦7号”幼苗进行灌根处理,测定其对小麦幼苗的促生效应;采用二代测序平台Illumina HiSeq×10对菌株WL911进行全基因组测序、功能注释及相关功能基因分析。【结果】菌株WL911鉴定为贝莱斯芽孢杆菌(Bacillus velezensis),可耐受4℃低温;菌株WL911对“青麦7号”幼苗生长具有显著的促生效果,26℃时小麦株高、根长和鲜重分别提高12.22%、50.12%和70.99%;4℃条件下小麦生物量提高的同时,叶绿素含量提高19.72%,H2O2、丙二醛(malondialdehyd,MDA)的积累量分别下降23.50%、40.68%,超氧化物歧化酶(superoxide dismutase,SOD)、过氧化物酶(peroxidase,POD)和过氧化氢酶(catalase,CAT)活性分别提高45.82%、17.35%和14.18%;WL911基因组大小为3 915 549 bp,G+C百分含量为46.47%;生物学功能gene ontology (GO)注释到的基因占基因总量的75.74%,包括促生相关功能基因glnByclQfetB等,可参与合成生长激素、营养元素等途径;存在mnhAmnhEpheTpheSproV等关键基因参与Na+外排机制、编码脯氨酸和酚类化合物等反应;也存在编码冷休克蛋白CspC、CspB和CspD的关键基因cspA。【结论】B.velezensis WL911(登录号为OP874802)是一种优质的生物肥料研发菌株。

    Abstract:

    [Background] The special habitat of the Qinghai-Xizang Plateau harbors the microbial resources with strong tolerance to stress. [Objective] To explore the wheat (Triticum aestivum) growth-promoting effect of Bacillus in the special habitats of Qinghai-Xizang Plateau. [Methods] The 16S rRNA gene and gyrB of the strain WL911 isolated from the rhizosphere of Tamarix ramosissima in Haixi Mongolian and Tibetan autonomous prefecture, Qinghai province were identified. The tolerance of the strain to low temperature was examined. The growth-promoting effect of the WL911 suspension (concentration of 1×107cfu/mL) on the seedlings of the wheat cultivar ‘Qingmai 7’ at 4℃ was determined. Illumina HiSeq×10 was used for the whole genome sequencing of the strain, which was followed by functional gene annotation and analysis. [Results] The strain WL911 was identified as Bacillus velezensis and could tolerate the low temperature of 4℃. It had a significant growth-promoting effect on the growth of ‘Qingmai 7’ seedlings. At 26℃, the strain increased the plant height, root length, and fresh weight of the seedlings by 12.22%, 50.12%, and 70.99%, respectively. At 4℃, the strain increased the chlorophyll content by 19.72% and decreased the accumulation of H2O2 and malondialdehyde by 23.50% and 40.68%, respectively, while increasing the biomass of the seedlings. At the same time, it increased the activities of superoxide dismutase, peroxidase, and catalase by 45.82%, 17.35%, and 14.18%, respectively. The genome size of WL911 was 3 915 549 bp, with the G+C content of 46.47%. The functional genes annotated by gene ontology accounted for 75.74% of the total genes. Specifically, the strain carried growth-promoting genes such as glnB, yclQ, and fetB, which participated in the synthesis of growth hormone and nutrients; it carried mnhA, mnhE, pheT, pheS and proV involved in Na+ efflux, proline synthesis, and phenolic compound; and it carried a key gene cspA encoding the cold shock proteins CspC, CspB, and CspD. [Conclusion] B. velezensis WL911 (GenBank accession number:OP874802) serves as a strain for the research and development of high-quality biological fertilizers.

    参考文献
    [1] 刘玉凤, 王珍琪, 宁晓峰, 倪洋, 李天来. 夜间低温对番茄幼苗磷素吸收及转运的影响[J]. 西北植物学报, 2017, 37(1):97-104. LIU YF, WANG ZQ, NING XF, NI Y, LI TL. Effects of low temperature on phosphorus absorption and transport of tomato seedlings[J]. Acta Botanica Boreali-occidentalia Sinica, 2017, 37(1):97-104(in Chinese).
    [2] 孙玉珺, 秦东玲, 伊凡, 宫磊, 刘哲, 吕金莹, 杨慧, 张平, 徐密林, 张倩, 杨德光. 外源水杨酸对低温胁迫下玉米幼苗生长及生理特性的影响[J]. 江苏农业学报, 2018, 34(4):726-734. SUN YJ, QIN DL, YI F, GONG L, LIU Z, LYU JY, YANG H, ZHANG P, XU ML, ZHANG Q, YANG DG. Effects of salicylic acid on growth and physiological property of maize seedling under low temperature stress[J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(4):726-734(in Chinese).
    [3] 郭扬. 低温胁迫对玉米生理生化指标的影响[J]. 广东蚕业, 2022, 56(1):16-18. GUO Y. Effects of low temperature on physiological and biochemical indexes of maize[J]. Guangdong Sericulture, 2022, 56(1):16-18(in Chinese).
    [4] WEI YL, CHEN HZ, WANG L, ZHAO Q, WANG D, ZHANG TG. Cold acclimation alleviates cold stress-induced PSII inhibition and oxidative damage in tobacco leaves[J]. Plant Signaling & Behavior, 2022, 17(1):2013638.
    [5] 杨华, 胡展, 郭照辉, 肖蓉, 罗容珺, 付祖姣, 魏小武, 蔡长平, 王玉双. 水稻促生菌的筛选、鉴定及其促生效果[J]. 微生物学通报, 2022, 49(6):2088-2099. YANG H, HU Z, GUO ZH, XIAO R, LUO RJ, FU ZJ, WEI XW, CAI CP, WANG YS. Screening and identification of rice growth-promoting strains and their effects on rice growth[J]. Microbiology China, 2022, 49(6):2088-2099(in Chinese).
    [6] 朱海峰, 郑永宏, 邵雪梅, 刘晓宏, 徐岩, 梁尔源. 树木年轮记录的青海乌兰地区近千年温度变化[J]. 科学通报, 2008(15):1835-1841. ZHU HF, ZHENG YH, SHAO XM, LIU XH, XU Y, LIANG EY. Changes of temperature in Wulan area of Qinghai in recent thousand years recorded by tree rings[J]. Chinese Science Bulletin, 2008(15):1835-1841(in Chinese).
    [7] HOSSEINI A, HOSSEINI M, SCHAUSBERGER P. Plant growth-promoting rhizobacteria enhance defense of strawberry plants against spider mites[J]. Frontiers in Plant Science, 2022, 12:783578.
    [8] ADEDAYO AA, BABALOLA OO, PRIGENT-COMBARET C, CRUZ C, STEFAN M, KUTU F, GLICK BR. The application of plant growth-promoting rhizobacteria in Solanum lycopersicum production in the agricultural system:a review[J]. PeerJ, 2022, 10:e13405.
    [9] JI C, TIAN HM, WANG XH, SONG X, JU RC, LI HY, GAO QX, LI CH, ZHANG PC, LI JT, HAO LP, WANG CD, ZHOU YY, XU RP, LIU Y, DU JF, LIU XL. Bacillus subtilis HG-15, a halotolerant rhizoplane bacterium, promotes growth and salinity tolerance in wheat (Triticum aestivum)[J]. BioMed Research International, 2022, 2022:9506227.
    [10] CHEN L, HAO ZH, LI KK, SHA Y, WANG ET, SUI XH, MI GH, TIAN CF, CHEN WX. Effects of growth-promoting rhizobacteria on maize growth and rhizosphere microbial community under conservation tillage in Northeast China[J]. Microbial Biotechnology, 2021, 14(2):535-550.
    [11] SHARMA P, CHOUHAN R, BAKSHI P, GANDHI SG, KAUR R, SHARMA A, BHARDWAJ R. Amelioration of chromium-induced oxidative stress by combined treatment of selected plant-growth-promoting rhizobacteria and earthworms via modulating the expression of genes related to reactive oxygen species metabolism in Brassica juncea[J]. Frontiers in Microbiology, 2022, 13:802512.
    [12] 曹秀兰, 叶雨婷, 马天浩, 胡安娜, 曹宇, 陈鹏泽, 伍壮生, 李鹏. 生防菌株贝莱斯芽孢杆菌HNU24全基因组测序及分析[J]. 热带作物学报, 2023, 44(5):905-913. CAO XL, YE YT, MA TH, HU AN, CAO Y, CHEN PZ, WU ZS, LI P. Analysis of the whole genome sequence of biocontrol strain Bacillus velezensis HNU24[J]. Chinese Journal of Tropical Crops, 2023, 44(5):905-913(in Chinese).
    [13] WANG YJ, TAO ZQ, WANG DM, WANG YJ, YANG YS, ZHAO GC, SHI SB, CHANG XH. An economic and viable approach to improve wheat quality in Qinghai-Tibetan Plateau, China[J]. Journal of Integrative Agriculture, 2022, 21(8):2227-2240.
    [14] KULDEEP S, PARVEEN C. Shifting the limits in Triticum aestivum research and breeding using a fully annotated reference genome[J]. Science, 2018, 24(7):361-362.
    [15] 陈兰, 谢永丽, 杨雪, 高英, 武玲玲, 王添, 许梦茹. 干旱沙地白刺根际Bacillus halotolerans DGL6对"青麦7号"的促生及防病效果[J]. 微生物学通报, 2023, 50(9):3899-3911. CHEN L, XIE YL, YANG X, GAO Y, WU LL, WANG T, XU MR. Effects of Bacillus halotolerans DGL6 on growth promotion and disease prevention of ‘Qingmai 7’ in arid sandy land [J]. Microbiology China, 2023, 50(9):3899-3911(in Chinese).
    [16] 王丽, 权有娟, 李想, 刘德梅, 陈志国. 青海不同海拔地区小麦种子萌发过程中α-淀粉酶活性差异比较[J]. 农学学报, 2020, 10(7):19-23, 34. WANG L, QUAN YJ, LI X, LIU DM, CHEN ZG. Activity of α-amylase in wheat seed germination at different altitudes in Qinghai:comparison[J]. Journal of Agriculture, 2020, 10(7):19-23, 34(in Chinese).
    [17] 柯媛媛, 陈翔, 倪芊芊, 张乐乐, 刘绿洲, 许辉, 魏凤珍, 李金才. 低温逆境胁迫下小麦ROS代谢及调控机制研究进展[J]. 大麦与谷类科学, 2021, 38(1):1-6, 21. KE YY, CHEN X, NI QQ, ZHANG LL, LIU LZ, XU H, WEI FZ, LI JC. Research progress of the metabolism of reactive oxygen species and its regulation mechanisms in wheat under low temperature stress[J]. Barley and Cereal Sciences, 2021, 38(1):1-6, 21(in Chinese).
    [18] 陈云云, 李惠霞, 张海英, 徐生军, 刘永刚. 萎缩芽胞杆菌MQ19ST15鉴定及对甘蓝枯萎病的盆栽防效[J]. 植物保护, 2021, 47(5):64-71. CHEN YY, LI HX, ZHANG HY, XU SJ, LIU YG. Identification of Bacillus atrophaeus MQ19ST15 and its control efficacy against Fusarium wilt on potted cabbage plants[J]. Plant Protection, 2021, 47(5):64-71(in Chinese).
    [19] 陈兰, 谢永丽, 吴晓晖, 杨雪, 王添, 武玲玲. 萎缩芽胞杆菌CKL1促盐胁迫下燕麦生长活性及其功能基因分析[J]. 微生物学通报, 2022, 49(8):3150-3164. CHEN L, XIE YL, WU XH, YANG X, WANG T, WU LL. Avena sativa growth-promoting activity of Bacillus atrophaeus CKL1 under salt stress and the functional genes[J]. Microbiology China, 2022, 49(8):3150-3164(in Chinese).
    [20] 姜喜铃, 丁万隆, 邢晓科. 不同培养基对兰科药用植物手参原球茎共生真菌的分离效果[J]. 菌物学报, 2022, 41(6):952-961. JIANG XL, DING WL, XING XK. Effects of different media on the isolation of symbiotic fungi from protocorm of medicinal orchid Gymnadenia conopsea[J]. Mycosystema, 2022, 41(6):952-961(in Chinese).
    [21] 杨雪, 谢永丽, 陈兰, 吴晓晖, 武玲玲, 孟晓霞, 夏介卓玛. 青海极端生境7株萎缩芽孢杆菌的生物活性[J]. 福建农林大学学报(自然科学版), 2020, 49(4):459-466. YANG X, XIE YL, CHEN L, WU XH, WU LL, MENG XX, XIA JM. Biological activity of 7 Bacillus atrophaeus strains isolated under extreme environment in Qinghai[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2020, 49(4):459-466(in Chinese).
    [22] WU XH, WU HJ, WANG RY, WANG ZQ, ZHANG YM, GU Q, FARZAND A, YANG X, SEMENOV M, BORRISS R, XIE YL, GAO XW. Genomic features and molecular function of a novel stress-tolerant Bacillus halotolerans strain isolated from an extreme environment[J]. Biology, 2021, 10(10):1030.
    [23] 王田田. 盐胁迫下弯曲芽孢杆菌KLBMP 4941对中华补血草的促生效应及其根际互作机理初步研究[D]. 徐州:江苏师范大学硕士学位论文, 2018. WANG TT. Preliminary study on the growth-promoting effect of Bacillus curvatus KLBMP 4941 on Limonium sinense under salt stress and its rhizosphere interaction mechanism[D]. Xuzhou:Master's Thesis of Jiangsu Normal University, 2018(in Chinese).
    [24] AYAZ M, ALI Q, FARZAND A, KHAN AR, LING HL, GAO XW. Nematicidal volatiles from Bacillus atrophaeus GBSC56 promote growth and stimulate induced systemic resistance in tomato against Meloidogyne incognita[J]. International Journal of Molecular Sciences, 2021, 22(9):5049.
    [25] 邹琦. 植物生理学实验指导[M]. 北京:中国农业出版社, 2000. ZOU Q. Experimental instruction of plant physiology[M]. Beijing:China Agriculture Press, 2000(in Chinese).
    [26] 李虹梅, 何明川, 高熹, 兰明先, 刘全俊, 施春兰, 杨蕊, 李金梁, 唐萍, 吴国星. 生防菌贝莱斯芽孢杆菌MC2-1全基因组测序分析[J]. 南方农业学报, 2022, 53(12):3420-3432. LI HM, HE MC, GAO X, LAN MX, LIU QJ, SHI CL, YANG R, LI JL, TANG P, WU GX. Whole genome sequencing analysis of a biocontrol bacterium Bacillus velezensis MC2-1[J]. Journal of Southern Agriculture, 2022, 53(12):3420-3432(in Chinese).
    [27] 杨志桃. 外源腐殖酸对低温胁迫下厚皮甜瓜幼苗生长及生理特性的影响[D]. 保定:河北农业大学硕士学位论文, 2022. YANG ZT. Effects of exogenous humic acid on growth and physiological characteristics of muskmelon seedlings under low temperature stress[D]. Baoding:Masterʼs Thesis of Hebei Agricultural University, 2022(in Chinese).
    [28] 刘炫杉. HSL3通过调节胞内过氧化氢稳态来影响气孔关闭和干旱胁迫响应[D]. 济南:山东大学博士学位论文, 2021. LIU XS. HSL3 affects stomatal closure and drought stress response by regulating intracellular hydrogen peroxide homeostasis[D]. Jinan:Doctoral Dissertation of Shandong University, 2021(in Chinese).
    [29] 李欠敏. 温度胁迫下外源褪黑素对大白菜幼苗生长及生理特性的影响[D]. 泰安:山东农业大学硕士学位论文, 2022. LI QM. Effects of exogenous melatonin on growth and physiological characteristics of Chinese cabbage seedlings under temperature stress[D]. Taiʼan:Masterʼs Thesis of Shandong Agricultural University, 2022(in Chinese).
    [30] 杨威. 温室番茄施用胶质类芽孢杆菌和巨大芽孢杆菌的生物效应及其机制[D]. 保定:河北农业大学博士学位论文, 2020. YANG W. Biological effects and mechanism of applying Bacteroides mucilaginosus and Bacillus megaterium to tomato in greenhouse[D]. Baoding:Doctoral Dissertation of Hebei Agricultural University, 2020(in Chinese).
    [31] 尤迪. 红霉糖多孢菌氮调控因子GlnR介导蛋白质乙酰化机制研究[D]. 上海:华东理工大学博士学位论文, 2016. YOU D. Study on the mechanism of protein acetylation mediated by nitrogen regulator GlnR of Saccharopolyspora erythraea[D]. Shanghai:Doctoral Dissertation of East China University of Science and Technology, 2016(in Chinese).
    [32] 苗朝华. 中度嗜盐新种黄河盐单胞菌盐胁迫的适应机制研究[D]. 北京:中国农业大学博士学位论文, 2016. MIAO CH. Study on adaptive mechanism of a new moderately halophilic species Halomonas Huanghe under salt stress[D]. Beijing:Doctoral Dissertation of China Agricultural University, 2016(in Chinese).
    [33] 王执. 致病微生物铁代谢途径关键蛋白质SirR与VctP结构与功能的研究[D]. 济南:山东大学硕士学位论文, 2012. WANG Z. Study on the structure and function of protein SirR and VctP, the key to iron metabolism pathway of pathogenic microorganisms[D]. Jinan:Masterʼs Thesis of Shandong University, 2012(in Chinese).
    [34] 王轶. 通过自溶相关基因的敲除提高枯草芽胞杆菌的产量[D]. 武汉:武汉大学博士学位论文, 2014. WANG Y. Increasing the yield of Bacillus subtilis by knocking out autolysis-related genes[D]. Wuhan:Doctoral Dissertation of Wuhan University, 2014(in Chinese).
    [35] 陈欣. 中度嗜盐菌Martelella sp. AD-3的3-羟基苯甲酸-6-羟化酶表达、纯化及功能研究[D]. 上海:华东理工大学硕士学位论文, 2018. CHEN X. Expression, purification and function of 3-hydroxybenzoic acid-6-hydroxylase from moderately halophilic bacterium Martellella sp. AD-3[D]. Shanghai:Masterʼs Thesis of East China University of Science and Technology, 2018(in Chinese).
    [36] 姜珊. 前噬菌体片段phiv205-3对禽致病性大肠杆菌DE205B环境适应性的影响[D]. 南京:南京农业大学硕士学位论文, 2020. JIANG S. Effect of phiv205-3, a pre-phage fragment, on the environmental adaptability of avian pathogenic Escherichia coli DE205B[D]. Nanjing:Masterʼs Thesis of Nanjing Agricultural University, 2020(in Chinese).
    [37] 韩学东, 杜春梅, 董锡文. 植物根际促生菌研究综述[J]. 乡村科技, 2023, 14(5):87-90. HAN XD, DU CM, DONG XW. A summary of plant growth promoting rhizobacteria studies[J]. Rural Science and Technologyi, 2023, 14(5):87-90(in Chinese).
    [38] 方园, 彭勇政, 廖长贵, 陈路生, 周琦, 黄俭, 阎依超, 王慕媛, 张祎坤, 邹丽芳, 陈功友. 一株具有防病促生功能的贝莱斯芽孢杆菌SF327[J]. 微生物学报, 2022, 62(10):4071-4088. FANG Y, PENG YZ, LIAO CG, CHEN LS, ZHOU Q, HUANG J, YAN YC, WANG MY, ZHANG YK, ZOU LF, CHEN GY. Bacillus velezensis SF327, a potential biocontrol agent with the functions of preventing plant diseases and promoting plant growth[J]. Acta Microbiologica Sinica, 2022, 62(10):4071-4088(in Chinese).
    [39] 安婉宁. 海洋生境贝莱斯芽孢杆菌CT2628的促生长抗逆作用研究[D]. 杭州:浙江农林大学硕士学位论文, 2021. AN WN. Study on the growth-promoting and stress-resistant effects of Bacillus velezensis CT2628 in marine habitat [D]. Hangzhou:Masterʼs Thesis of Zhejiang Agriculture and Forestry University, 2021(in Chinese).
    [40] ALI N, SWARNKAR MK, VEER R, KAUSHAL P, PATI AM. Temperature-induced modulation of stress-tolerant PGP genes bioprospected from Bacillus sp. IHBT-705 associated with saffron (Crocus sativus) rhizosphere:a natural-treasure trove of microbial biostimulants[J]. Frontiers in Plant Science, 2023, 14:1141538.
    [41] 魏航, 郑言, 郭淼. APX和SOD对佛手瓜和南瓜耐水涝和耐低温的影响[J]. 分子植物育种, 2023, 21(14):4762-4769. HANG W, YAN Z, MIAO G. Effects of APX and SOD on waterlogging and low temperature tolerance of Sechium edule and Cucurbita moschata[J]. Molecular Plant Breeding, 2023, 21(14):4762-4769(in Chinese).
    [42] 王晓晓. 低温胁迫下外源SOD对矮牵牛生理特性的影响[J]. 种子, 2021, 40(9):108-111, 117. WANG XX. Effects of exogenous SOD on physiological characteristics of Petunia hybrida under low temperature stress[J]. Seed, 2021, 40(9):108-111, 117(in Chinese).
    [43] 李甜子, 郑殿峰, 冯乃杰, 赵黎明, 母德伟, 刘玲, 陈观杰, 周行. 植物生长调节剂对低温胁迫下荔枝生理特性及产量的影响[J]. 热带作物学报, 2022, 43(3):509-519. LI TZ, ZHENG DF, FENG NJ, ZHAO LM, MU DW, LIU L, CHEN GJ, ZHOU H. Effects of plant growth regulators on physiological characteristics and yield of litchi plants under low temperature stress[J]. Chinese Journal of Tropical Crops, 2022, 43(3):509-519(in Chinese).
    [44] 苏迅帆. 枯草芽孢杆菌对拟南芥的干旱和盐胁迫耐受性的影响[J]. 分子植物育种, 2022, 20(2):536-543. SU XF. Effects of Bacillus subtilis on drought and salt stress tolerance of Arabidopsis thaliana[J]. Molecular Plant Breeding, 2022, 20(2):536-543(in Chinese).
    [45] ALI SHAH A, BIBI F, HUSSAIN I, AHMAD YASIN N, AKRAM W, TAHIR MS, ALI HM, SALEM MZM, SIDDIQUI MH, DANISH S, FAHAD S, DATTA R. Synergistic effect of Bacillus thuringiensis IAGS 199 and putrescine on alleviating cadmium-induced phytotoxicity in Capsicum annum[J]. Plants, 2020, 9(11):1512.
    相似文献
    引证文献
引用本文

高英,谢永丽,陈兰,杨雪,陈俊奇,王添,武玲玲,李俊熹. 芽孢杆菌WL911促低温下小麦生长效应及其功能基因分析[J]. 微生物学通报, 2024, 51(1): 209-224

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-22
  • 录用日期:2023-06-19
  • 在线发布日期: 2024-01-02
  • 出版日期: 2024-01-20
文章二维码