科微学术

微生物学通报

荒漠草原盐沼湿地苦豆子土壤细菌群落构建机制及其影响因素
作者:
基金项目:

宁夏回族自治区自然科学基金(2021AAC03233);教育部产学研协同合作育人项目(221001018144148);北方民族大学重点学科建设项目(SKJS202202)


Factors influencing the bacterial community assembly in the soil of a salt marsh in the desert steppe dominated by Sophora alopecuroides
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [66]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】荒漠草原盐沼湿地是陆地生态系统的重要组成部分,土壤水分和盐分变化是影响该生态系统土壤细菌群落构建的重要因素。【目的】土壤细菌群落构建是由确定性和随机性主导的连续生态过程,阐明荒漠草原盐沼湿地土壤细菌群落的构建机制对于加深微生物作为关键生态系统因子重要性的理解具有积极意义。【方法】以宁夏中部典型荒漠草原盐沼苦水湖湿地为研究对象,对近湖边(near the lake,NL)和远离湖边(far from the lake,FL)苦豆子群落土壤理化特性进行测定并结合土壤细菌高通量测序分析。【结果】NL和FL样地具有明显的水盐梯度变化,NL样地土壤pH、含水量和电导率均显著高于FL样地;变形菌门、放线菌门、厚壁菌门、拟杆菌门和黏菌门是研究区域土壤细菌群落的优势菌门,变形菌门相对丰度随水盐梯度上升而升高,放线菌门和厚壁菌门相对丰度则随之下降,门下成员大多与水盐变化具有明显的相关性;此外,FL样地土壤细菌网络则具有稳定的网络关系;随着NL样地向FL样地的延伸,土壤细菌群落由随机过程主导,并且受pH、电导率和环境变量的影响。【结论】荒漠草原盐沼湿地水分和盐分的变化改变了土壤细菌群落结构;土壤细菌群落通过生态位占据等策略提高逆境下的生存能力;细菌群落构建是随机过程和确定性过程组成的连续统一体,同样受环境变化的影响。本结果揭示了荒漠草原盐沼湿地细菌群落结构和相互关系对环境变化的响应特征,同时阐明了该区土壤细菌群落的构建机制及影响因素,也为相关科学研究提供了一定理论参考。

    Abstract:

    [Background] Salt marshes in desert steppe are an important part of terrestrial ecosystems, and soil moisture and salinity changes are important factors affecting the soil bacterial community assembly in this ecosystem. [Objective] The soil bacterial community assembly is a continuous ecological process dominated by deterministic and stochastic processes. Revealing the assembly mechanism of soil bacterial communities in salt marshes of desert steppe helps to deepen our understanding about the importance of microorganisms as key ecosystem factors. [Methods] The physicochemical properties were measured for the soil samples collected near the Kushuihu lake (NL) and far from the Kushuihu lake (FL), a typical salt marsh area of the desert steppe in central Ningxia. High-throughput sequencing was performed to analyze the bacterial information. [Results] NL and FL sampling sites presented significant water-salt gradients. The NL soil samples had higher pH, water content, and electrical conductivity than the FL soil samples. Proteobacteria, Actinobacteriota, Firmicutes, Bacteroidota, and Myxococcota were the dominant phyla in the soil samples. As the water-salt gradient increased, the relative abundance of Proteobacteria increased, while that of Actinobacteriota and Firmicutes decreased. Most of the members belong to the phyla had obvious correlations with water-salt changes. In addition, the soil bacterial network in the FL sites had stable network relationship. From the NL to FL sampling sites, the soil bacterial community gradually became being dominated by stochastic factors and was influenced by soil pH, electrical conductivity, and environmental variables. [Conclusion] The changes in soil moisture and salinity in salt marshes of desert steppe altered the soil bacterial community structure. Soil bacterial communities improved the survival under stress by strategies such as niche occupation. The assembly of bacterial communities is a continuum consisting of stochastic and deterministic processes, which are influenced by environmental changes. The results reveal the response characteristics of bacterial community structure and interrelationship to environmental changes in salt marshes of desert steppe and clarify the assembly mechanism and influencing factors of soil bacterial community, providing a theoretical reference for related studies.

    参考文献
    [1] LIU B, ZHAO WZ, WEN ZJ, ZHANG ZH. Response of water and energy exchange to the environmental variable in a desert-oasis wetland of Northwest China[J]. Hydrological Processes, 2014, 28(25):6098-6112.
    [2] 潘雅清. 荒漠草原盐生植物-微生物互馈效应研究[D]. 银川:宁夏大学博士学位论文, 2022. PAN YQ. Study on the feedbacks of halopshytes and microorganisms in desert steppe[D]. Yinchuan:Doctoral Dissertation of Ningxia University, 2022(in Chinese).
    [3] PAN YQ, KANG P, HU JP, SONG NP. Bacterial community demonstrates stronger network connectivity than fungal community in desert-grassland salt marsh[J]. Science of the Total Environment, 2021, 798:149118.
    [4] 王启学, 王兴, 余轩, 陈娟, 宋乃平, 吴旭东. 荒漠区湿地植物群落分类排序及其与土壤环境因子的关系[J]. 草业科学, 2023, 40(1):37-45. WANG QX, WANG X, YU X, CHEN J, SONG NP, WU XD. Classification and ordination of a plant community in a desert wetland and its relationship with soil environmental factors[J]. Pratacultural Science, 2023, 40(1):37-45(in Chinese).
    [5] 冯艳琼. 荒漠草原区盐生草甸湿地土壤理化特性、盐分阈值及微生物响应研究[D]. 银川:宁夏大学硕士学位论文, 2020. FENG YQ. Study on soil physical and chemical properties, salinity thresholds and microbial responses of saline meadows wetlands in desert steppe[D]. Yinchuan:Master's Thesis of Ningxia University, 2020(in Chinese).
    [6] 王启学. 植被恢复背景下荒漠草原土壤水分时空特征及其影响因素研究[D]. 银川:宁夏大学硕士学位论文, 2022. WANG QX. Study on the spatial and temporal characteristics of soil moisture and its influencing factors in desert grassland under the background of vegetation restoration[D]. Yinchuan:Master's Thesis of Ningxia University, 2022(in Chinese).
    [7] YAO RJ, GAO QC, LIU YX, LI HQ, YANG JS, BAI YC, ZHU H, WANG XP, XIE WP, ZHANG X. Deep vertical rotary tillage mitigates salinization hazards and shifts microbial community structure in salt-affected anthropogenic-alluvial soil[J]. Soil and Tillage Research, 2023, 227:105627.
    [8] ZHU YH, SONG XL, LIU XL, CHEN WF, NIU XC, ZHOU WZ. Influences of land reclamation on soil bacterial communities of abandoned salt pans in the Yellow River Delta[J]. Land Degradation & Development, 2022, 33(16):3231-3244.
    [9] FANG J, ADAMS JM, DENG YC, ZHU XS, HERNÁNDEZ M, LIU YQ. Propagule limitation affects the response of soil methane oxidizer community to increased salinity[J]. Geoderma, 2022, 426:116082.
    [10] FREILICH S, KREIMER A, MEILIJSON I, GOPHNA U, SHARAN R, RUPPIN E. The large-scale organization of the bacterial network of ecological co-occurrence interactions[J]. Nucleic Acids Research, 2010, 38(12):3857-3868.
    [11] PAN YQ, KANG P, TAN M, HU JP, ZHANG YQ, ZHANG JL, SONG NP, LI XR. Root exudates and rhizosphere soil bacterial relationships of Nitraria tangutorum are linked to k-strategists bacterial community under salt stress[J]. Frontiers in Plant Science, 2022, 13:997292.
    [12] LIU B, ARLOTTI D, HUYGHEBAERT B, TEBBE CC. Disentangling the impact of contrasting agricultural management practices on soil microbial communities-importance of rare bacterial community members[J]. Soil Biology and Biochemistry, 2022, 166:108573.
    [13] LACERDA-JÚNIOR GV, PASTORE RAA, DELFORNO TP, CENTURION VB, NORONHA MF, VENTURA JP, SARTORATTO A, MELO IS, OLIVEIRA VM. Taxonomic and functional dynamics of the soil microbiome from a tropical dry forest in kraft lignin-amended microcosms[J]. Applied Soil Ecology, 2023, 183:104766.
    [14] YANG LH, SUN RH, LI JG, ZHAI LM, CUI HL, FAN BQ, WANG HY, LIU HB. Combined organic-inorganic fertilization builds higher stability of soil and root microbial networks than exclusive mineral or organic fertilization[J]. Soil Ecology Letters, 2023, 5(2):220142.
    [15] ZHANG LY, LI Y, SUN XX, ADAMS JM, WANG LF, ZHANG HJ, CHU HY. More robust co-occurrence patterns and stronger dispersal limitations of bacterial communities in wet than dry seasons of riparian wetlands[J]. mSystems, 2023, 8(2):e0118722.
    [16] MANDAKOVIC D, AGUADO-NORESE C, GARCÍA-JIMÉNEZ B, HODAR C, MALDONADO JE, GAETE A, LATORRE M, WILKINSON MD, GUTIÉRREZ RA, CAVIERES LA, MEDINA J, CAMBIAZO V, GONZALEZ M. Testing the stress gradient hypothesis in soil bacterial communities associated with vegetation belts in the Andean Atacama Desert[J]. Environmental Microbiome, 2023, 18(1):1-17.
    [17] SUN MY, LI MC, ZHOU YQ, LIU JA, SHI WC, WU XL, XIE BH, DENG Y, GAO Z. Nitrogen deposition enhances the deterministic process of the prokaryotic community and increases the complexity of the microbial co-network in coastal wetlands[J]. Science of the Total Environment, 2023, 856:158939.
    [18] ZHALNINA K, LOUIE KB, HAO Z, MANSOORI N, da ROCHA UN, SHI SJ, CHO H, KARAOZ U, LOQUÉ D, BOWEN BP, FIRESTONE MK, NORTHEN TR, BRODIE EL. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology, 2018, 3(4):470-480.
    [19] RATH KM, FIERER N, MURPHY DV, ROUSK J. Linking bacterial community composition to soil salinity along environmental gradients[J]. The ISME Journal, 2019, 13(3):836-846.
    [20] LIAO WF, TONG D, NIE XD, LIU YJ, RAN FW, LIAO SS, CHEN J, ZENG AQ, LI ZW. Assembly process and source tracking of microbial communities in sediments of Dongting Lake[J]. Soil Ecology Letters, 2023, 5(4):1-10.
    [21] STEGEN JC, LIN XJ, FREDRICKSON JK, CHEN XY, KENNEDY DW, MURRAY CJ, ROCKHOLD ML, KONOPKA A. Quantifying community assembly processes and identifying features that impose them[J]. The ISME Journal, 2013, 7(11):2069-2079.
    [22] JIAO S, YANG YF, XU YQ, ZHANG J, LU YH. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across Eastern China[J]. The ISME Journal, 2020, 14(1):202-216.
    [23] KANG P, PAN YQ, YANG P, HU JP, ZHAO TL, ZHANG YQ, DING XD, YAN XF. A comparison of microbial composition under three tree ecosystems using the stochastic process and network complexity approaches[J]. Frontiers in Microbiology, 2022, 13:1018077.
    [24] SLOAN WT, LUNN M, WOODCOCK S, HEAD IM, NEE S, CURTIS TP. Quantifying the roles of immigration and chance in shaping prokaryote community structure[J]. Environmental Microbiology, 2006, 8(4):732-740.
    [25] CHEN WD, REN KX, ISABWE A, CHEN HH, LIU M, YANG J. Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons[J]. Microbiome, 2019, 7(1):138.
    [26] STEGEN JC, LIN XJ, KONOPKA AE, FREDRICKSON JK. Stochastic and deterministic assembly processes in subsurface microbial communities[J]. The ISME Journal, 2012, 6(9):1653-1664.
    [27] XUN WB, LI W, XIONG W, REN Y, LIU YP, MIAO YZ, XU ZH, ZHANG N, SHEN QR, ZHANG RF. Diversity-triggered deterministic bacterial assembly constrains community functions[J]. Nature Communications, 2019, 10:3833.
    [28] WAN WJ, HE DL, LI X, XING YH, LIU S, YE LP, YANG YY. Linking rare and abundant phoD-harboring bacteria with ecosystem multifunctionality in subtropical forests:from community diversity to environmental adaptation[J]. Science of the Total Environment, 2021, 796:148943.
    [29] ZHANG Y, DONG SK, GAO QZ, GANJURJAV H, WANG XX, GENG W. "Rare biosphere" plays important roles in regulating soil available nitrogen and plant biomass in alpine grassland ecosystems under climate changes[J]. Agriculture, Ecosystems & Environment, 2019, 279:187-193.
    [30] WAN WJ, LIU S, LI X, XING YH, CHEN WL, HUANG QY. Bridging rare and abundant bacteria with ecosystem multifunctionality in salinized agricultural soils:from community diversity to environmental adaptation[J]. mSystems, 2021, 6(2):e01221-20.
    [31] ZHANG XY, QI LL, LI WM, HU BX, DAI ZX. Bacterial community variations with salinity in the saltwater-intruded estuarine aquifer[J]. Science of the Total Environment, 2021, 755:142423.
    [32] YAO ZY, DU SC, LIANG CL, ZHAO YJ, DINI-ANDREOTE F, WANG K, ZHANG DM. Bacterial community assembly in a typical estuarine marsh with multiple environmental gradients[J]. Applied and Environmental Microbiology, 2019, 85(6):e02602-e02618.
    [33] FLOWERS TJ, MUNNS R, COLMER TD. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes[J]. Annals of Botany, 2015, 115(3):419-431.
    [34] WEI DD, CHENG D, LIU WB, LIU T, YANG XH, ZHENG YH. Adequate potassium application enhances salt tolerance of moderate-halophyte Sophora alopecuroides[J]. Plant, Soil and Environment, 2015, 61(8):364-370.
    [35] KANG P, PAN YQ, RAN YC, LI WN, SHAO MX, ZHANG YQ, JI QB, DING XD. Soil saprophytic fungi could be used as an important ecological indicator for land management in desert steppe[J]. Ecological Indicators, 2023, 150:110224.
    [36] 鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社, 2000. BAO SD. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing:China Agriculture Press, 2000(in Chinese).
    [37] CHENG ZB, ZHANG FH, GALE WJ, WANG WC, SANG W, YANG HC. Effects of reclamation years on composition and diversity of soil bacterial communities in Northwest China[J]. Canadian Journal of Microbiology, 2018, 64(1):28-40.
    [38] CAPORASO JG, LAUBER CL, WALTERS WA, BERG-LYONS D, HUNTLEY J, FIERER N, OWENS SM, BETLEY J, FRASER L, BAUER M, GORMLEY N, GILBERT JA, SMITH G, KNIGHT R. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms[J]. The ISME Journal, 2012, 6(8):1621-1624.
    [39] 乌吉斯古冷, 康鹏, 胡金鹏, 潘雅清, 周月, 马蓉, 彭伊扬, 刘建利. 荒漠植物黑沙蒿嫩枝与成熟枝内生菌群落结构差异[J]. 微生物学通报, 2022, 49(2):569-582. WUJISIGULENG, KANG P, HU JP, PAN YQ, ZHOU Y, MA R, PENG YY, LIU JL. Difference in endophyte community structure between young and mature branches of Artemisia ordosica[J]. Microbiology China, 2022, 49(2):569-582(in Chinese).
    [40] 乌吉斯古冷, 潘雅清, 胡金鹏, 张亚琪, 李斌, 刘建利, 康鹏. 长叶红砂叶际细菌和真菌群落对季节变化的响应特征[J]. 微生物学通报, 2023, 50(1):48-63. WUJISIGULENG, PAN YQ, HU JP, ZHANG YQ, LI B, LIU JL, KANG P. Response of phyllosphere bacteria and fungi of Reaumuria trigyna to seasonal change[J]. Microbiology China, 2023, 50(1):48-63(in Chinese).
    [41] JIAO S, CHU HY, ZHANG BG, WEI XR, CHEN WM, WEI GH. Linking soil fungi to bacterial community assembly in arid ecosystems[J]. iMeta, 2022, 1(1):e2.
    [42] LIU M, YU Z, YU XQ, XUE YY, HUANG BQ, YANG J. Invasion by cordgrass increases microbial diversity and alters community composition in a mangrove nature reserve[J]. Frontiers in Microbiology, 2017, 8:2503.
    [43] WANG S, SUN L, LING N, ZHU C, CHI FQ, LI WQ, HAO XY, ZHANG W, BIAN JY, CHEN L, WEI D. Exploring soil factors determining composition and structure of the bacterial communities in saline-alkali soils of Songnen Plain[J]. Frontiers in Microbiology, 2020, 10:2902.
    [44] XI XF, WANG L, HU JJ, TANG YS, HU Y, FU XH, SUN Y, FAI TSANG Y, ZHANG YN, CHEN JH. Salinity influence on soil microbial respiration rate of wetland in the Yangtze River Estuary through changing microbial community[J]. Journal of Environmental Sciences, 2014, 26(12):2562-2570.
    [45] LOGANATHACHETTI DS, ALHASHMI F, CHANDRAN S, MUNDRA S. Irrigation water salinity structures the bacterial communities of date palm (Phoenix dactylifera)-associated bulk soil[J]. Frontiers in Plant Science, 2022, 13:944637.
    [46] XU L, NAYLOR D, DONG ZB, SIMMONS T, PIERROZ G, HIXSON KK, KIM YM, ZINK EM, ENGBRECHT KM, WANG Y, GAO C, DEGRAAF S, MADERA MA, SIEVERT JA, HOLLINGSWORTH J, BIRDSEYE D, SCHELLER HV, HUTMACHER R, DAHLBERG J, JANSSON C, et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(18):e4284-4293.
    [47] BARBERÁN A, BATES ST, CASAMAYOR EO, FIERER N. Using network analysis to explore co-occurrence patterns in soil microbial communities[J]. The ISME Journal, 2012, 6(2):343-351.
    [48] WANG ZR, LIU YB, ZHAO LN, ZHANG WL, LIU LC. Change of soil microbial community under long-term fertilization in a reclaimed sandy agricultural ecosystem[J]. PeerJ, 2019, 7:e6497.
    [49] FAUST K, RAES J. Microbial interactions:from networks to models[J]. Nature Reviews Microbiology, 2012, 10(8):538-550.
    [50] TOJU H, PEAY KG, YAMAMICHI M, NARISAWA K, HIRUMA K, NAITO K, FUKUDA S, USHIO M, NAKAOKA S, ONODA Y, YOSHIDA K, SCHLAEPPI K, BAI Y, SUGIURA R, ICHIHASHI Y, MINAMISAWA K, KIERS ET. Core microbiomes for sustainable agroecosystems[J]. Nature Plants, 2018, 4(5):247-257.
    [51] YAO MJ, RUI JP, LI JB, WANG JM, CAO WD, LI XZ. Soil bacterial community shifts driven by restoration time and steppe types in the degraded steppe of Inner Mongolia[J]. Catena, 2018, 165:228-236.
    [52] SHI SJ, NUCCIO EE, SHI ZJ, HE ZL, ZHOU JZ, FIRESTONE MK. The interconnected rhizosphere:high network complexity dominates rhizosphere assemblages[J]. Ecology Letters, 2016, 19(8):926-936.
    [53] WANG Y, ZHANG R, ZHENG Q, DENG Y, van NOSTRAND JD, ZHOU JZ, JIAO NZ. Bacterioplankton community resilience to ocean acidification:evidence from microbial network analysis[J]. ICES Journal of Marine Science, 2016, 73(3):865-875.
    [54] de VRIES FT, GRIFFITHS RI, BAILEY M, CRAIG H, GIRLANDA M, GWEON HS, HALLIN S, KAISERMANN A, KEITH AM, KRETZSCHMAR M, LEMANCEAU P, LUMINI E, MASON KE, OLIVER A, OSTLE N, PROSSER JI, THION C, THOMSON B, BARDGETT RD. Soil bacterial networks are less stable under drought than fungal networks[J]. Nature Communications, 2018, 9:3033.
    [55] WIDDIG M, HEINTZ-BUSCHART A, SCHLEUSS PM, GUHR A, BORER ET, SEABLOOM EW, SPOHN M. Effects of nitrogen and phosphorus addition on microbial community composition and element cycling in a grassland soil[J]. Soil Biology and Biochemistry, 2020, 151:108041.
    [56] ZHANG ZH, CHAI XT, TARIQ A, ZENG FJ, LI XY, GRACIANO C. Intercropping systems modify desert plant-associated microbial communities and weaken host effects in a hyper-arid desert[J]. Frontiers in Microbiology, 2021, 12:754453.
    [57] BAI R, WANG JT, DENG Y, HE JZ, FENG K, ZHANG LM. Microbial community and functional structure significantly varied among distinct types of paddy soils but responded differently along gradients of soil depth layers[J]. Frontiers in Microbiology, 2017, 8:945.
    [58] ANDERSON MJ, CRIST TO, CHASE JM, VELLEND M, INOUYE BD, FREESTONE AL, SANDERS NJ, CORNELL HV, COMITA LS, DAVIES KF, HARRISON SP, KRAFT NJB, STEGEN JC, SWENSON NG. Navigating the multiple meanings of β diversity:a roadmap for the practicing ecologist[J]. Ecology Letters, 2011, 14(1):19-28.
    [59] 杜芳, 荣晓莹, 徐鹏, 尹本丰, 张元明. 降水对古尔班通古特沙漠细菌群落多样性和构建过程的影响[J]. 生物多样性, 2023, 31(2):137-150. DU F, RONG XY, XU P, YIN BF, ZHANG YM. Bacterial diversity and community assembly responses to precipitation in the Gurbantunggut Desert[J]. Biodiversity Science, 2023, 31(2):137-150(in Chinese).
    [60] FERRENBERG S, O'NEILL SP, KNELMAN JE, TODD B, DUGGAN S, BRADLEY D, ROBINSON T, SCHMIDT SK, TOWNSEND AR, WILLIAMS MW, CLEVELAND CC, MELBOURNE BA, JIANG L, NEMERGUT DR. Changes in assembly processes in soil bacterial communities following a wildfire disturbance[J]. The ISME Journal, 2013, 7(6):1102-1111.
    [61] TIAN JQ, QIAO YC, WU B, CHEN H, LI W, JIANG N, ZHANG XL, LIU XZ. Ecological succession pattern of fungal community in soil along a retreating glacier[J]. Frontiers in Microbiology, 2017, 8:1028.
    [62] 孟凡凡, 胡盎, 王建军. 微生物性状揭示物种分布格局、群落构建机制和生态系统功能[J]. 微生物学报, 2020, 60(9):1784-1800. MENG FF, HU A, WANG JJ. Microbial traits shed light on species distributions, assembly processes and ecosystem functions[J]. Acta Microbiologica Sinica, 2020, 60(9):1784-1800(in Chinese).
    [63] 陈瑞蕊, 张建伟, 董洋, 林先贵, 冯有智. 盐度对滨海土壤细菌多样性和群落构建过程的影响[J]. 应用生态学报, 2021, 32(5):1816-1824. CHEN RR, ZHANG JW, DONG Y, LIN XG, FENG YZ. Effects of salinity on soil bacterial diversity and assembly processes in coastal soils[J]. Chinese Journal of Applied Ecology, 2021, 32(5):1816-1824(in Chinese).
    [64] GRIFFITHS RI, THOMSON BC, JAMES P, BELL T, BAILEY M, WHITELEY AS. The bacterial biogeography of British soils[J]. Environmental Microbiology, 2011, 13(6):1642-1654.
    [65] XIONG JB, SUN HB, PENG F, ZHANG HY, XUE X, GIBBONS SM, GILBERT JA, CHU HY. Characterizing changes in soil bacterial community structure in response to short-term warming[J]. FEMS Microbiology Ecology, 2014, 89(2):281-292.
    [66] TRIPATHI BM, STEGEN JC, KIM M, DONG K, ADAMS JM, LEE YK. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria[J]. The ISME Journal, 2018, 12(4):1072-1083.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

文婧荣,潘雅清,康鹏,张亚琪,胡金鹏,雷茜. 荒漠草原盐沼湿地苦豆子土壤细菌群落构建机制及其影响因素[J]. 微生物学通报, 2024, 51(1): 111-126

复制
分享
文章指标
  • 点击次数:309
  • 下载次数: 889
  • HTML阅读次数: 529
  • 引用次数: 0
历史
  • 收稿日期:2023-06-05
  • 录用日期:2023-07-11
  • 在线发布日期: 2024-01-02
  • 出版日期: 2024-01-20
文章二维码