科微学术

微生物学通报

节杆菌FX8的分离筛选及其生物成矿除砷
作者:
基金项目:

国家自然科学基金(32100102);湖北省教育厅科学研究计划(Q20212902)


Isolation of Arthrobacter FX8 capable of removing arsenic by biomineralization
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    【背景】砷(arsenic,As)是一种剧毒的类金属,水体砷污染问题日益突出,严重威胁人类健康,开发高效除砷方法迫在眉睫。【目的】吸附法是目前除砷应用最多的方法之一,对从铁矿表层土壤分离得到的一株铁氧化菌FX8进行研究,以期通过其氧化Fe (II)生成的铁矿物作为吸附剂而去除砷。【方法】通过形态学特征、生理生化特性、全基因组测序分析对菌株进行鉴定,采用邻菲罗啉分光光度法测定总Fe和Fe (II),利用X射线衍射(X-ray diffraction,XRD)、X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)和能量色散谱(energy dispersive spectrometer,EDS)对铁氧化物沉淀进行分析,采用高压液相色谱-氢化物发生-原子荧光光谱测定总As。【结果】菌株FX8为革兰氏阳性、好氧,其菌落为圆形、乳白色,扫描电镜(scanning electron microscope,SEM)镜检细胞为杆状,大小为(0.5-2.5)μm×(0.13-0.25)μm,可归为节杆菌属(Arthrobacter)。菌株FX8能够氧化Fe (II)并生成铁氧化物沉淀,该沉淀为一种无定形的Fe (III)矿物,其结晶性差且含有大量生物杂质,并且通过产生胞外酶氧化Fe (II)。菌株FX8在28℃、150 r/min条件下,在加As (III)和As (V)体系中,48 h内总Fe的去除率均为100%,而对应的总As去除率分别为99.54%和99.86%;在As (III)和As (V)体系中加入菌株FX8的胞外粗酶液,2 h内总Fe的去除率均为100%,相应的总As去除率为99.45%和100%。【结论】菌株FX8是一株铁氧化菌,利用其胞外粗酶液生物矿化铁除砷的效果优于菌株-砷共培养,本研究可为水体砷污染的高效生物修复提供新的生物材料及理论参考。

    Abstract:

    [Background] The contamination of arsenic (As), a highly toxic metalloid, in water is aggravating, which threatens human health. The common method used for removing As is adsorption, and it is urgent to develop efficient As removal methods. [Objective] To characterize an iron-oxidizing bacterial strain FX8 isolated from the surface soil of iron ore, so as to use the iron mineral (adsorbent) produced by the strain via oxidizing Fe(II) for removing As. [Methods] The strain was identified based on morphological, physiological, and biochemical characteristics and genome-wide sequencing evidence. The concentrations of total Fe and Fe(II) were determined by phenanthroline spectrophotometry. The iron oxide precipitates were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy, and energy dispersive spectrometer. The concentration of total As was determined by high performance liquid chromatography in combination with hydride generation and atomic fluorescence spectroscopy. [Results] Strain FX8 was Gram-positive and aerobic, with while and round colonies. Its cells were rod-shaped with the size of (0.5-2.5) μm×(0.13-0.25)μm. FX8 was identified as a strain of Arthrobacter. It could oxidize Fe(II) to generate iron oxide precipitates which were an amorphous Fe(III) mineral with poor crystallinity and a large amount of biological impurities. Strain FX8 oxidized Fe(II) by producing extracellular enzymes. The strain cultured with As(III) or As(V) at 28℃ and 150 r/min showed the total Fe removal rates of 100% in 48 h and the corresponding total As removal rates of 99.54% and 99.86%, respectively. When the extracellular enzyme liquid of strain FX8 was added into the As(III) or As(V) system, the total Fe removal rates reached 100% in 2 h, and the corresponding total As removal rates were 99.45% and 100%, respectively. [Conclusion] Strain FX8 is an iron-oxidizing bacterium, and the iron biomineralization with its extracellular enzyme liquid outperforms strain-arsenic coculture in the removal of As. The findings provide new biomaterials and theoretical references for the efficient remediation of As-contaminated water.

    参考文献
    [1] ZUCKERMAN AJ. IARC monographs on the evaluation of carcinogenic risks to humans[J]. Journal of Clinical Pathology, 1995, 48(7):691.
    [2] ZHU YG, YOSHINAGA M, ZHAO FJ, ROSEN BP. Earth abides arsenic biotransformations[J]. Annual Review of Earth and Planetary Sciences, 2014, 42:443-467.
    [3] BRAMMER H, RAVENSCROFT P. Arsenic in groundwater:a threat to sustainable agriculture in South and South-east Asia[J]. Environment International, 2009, 35(3):647-654.
    [4] 殷园园. 砷代谢与癌症、心血管疾病以及糖尿病的关系:流行病学证据的系统回顾[J]. 环境与职业医学, 2018, 35(12):1150-1161. YIN YY. Relationship between arsenic metabolism and cancer, cardiovascular disease and diabetes:a systematic review of epidemiological evidence[J]. Journal of Environmental & Occupational Medicine, 2018, 35(12):1150-1161(in Chinese).
    [5] TSENG C, CHONG C, CHEN C, LIN BJ, TAI T. Abnormal peripheral microcirculation in seemingly normal subjects living in Blackfoot-disease-hyperendemic Villages in Taiwan[J]. International Journal of Microcirculation:Clinical and Experimental, 1995, 15:21-27.
    [6] 蔡林, 王革娇. 抗砷性微生物及其抗砷分子机制研究进展[J]. 微生物学通报, 2009, 36(8):1253-1259. CAI L, WANG GJ. Advance on studies of arsenic-resistant microorganisms and molecular mechanisms[J]. Microbiology China, 2009, 36(8):1253-1259(in Chinese).
    [7] 关小红, 李修华, 姜利, 董浩然, 马军. 氧化-混凝法去除水中As(Ⅲ)的研究进展[J]. 环境科学与技术, 2009, 32(8):88-92, 100. GUAN XH, LI XH, JIANG L, DONG HR, MA J. Review on As(Ⅲ)removal by oxidation and subsequent coagulation[J]. Environmental Science & Technology, 2009, 32(8):88-92, 100(in Chinese).
    [8] 罗铭宇, 张丽娜, 杨海艳, 段红珍. 废水中砷去除的研究进展与展望[J]. 精细化工中间体, 2018, 48(6):1-5. LUO MY, ZHANG LN, YANG HY, DUAN HZ. Research progress and prospects of arsenic removal from wastewater[J]. Fine Chemical Intermediates, 2018, 48(6):1-5(in Chinese).
    [9] ZOUBOULIS AI, KATSOYIANNIS IA. Recent advances in the bioremediation of arsenic-contaminated groundwaters[J]. Environment International, 2005, 31(2):213-219.
    [10] Guo H, Li Y, Zhao K. Arsenate removal from aqueous solution using synthetic siderite[J]. Journal of Hazardous Materials, 2010, 176(1/2/3):174-180.
    [11] TRESINTSI S, SIMEONIDIS K, VOURLIAS G, STAVROPOULOS G, MITRAKAS M. Kilogram-scale synthesis of iron oxy-hydroxides with improved arsenic removal capacity:study of Fe(II) oxidation-precipitation parameters[J]. Water Research, 2012, 46(16):5255-5267.
    [12] LIU BM, LIU ZX, WU HX, PAN SL, CHENG X, SUN YJ, XU YH. Effective and simultaneous removal of organic/inorganic arsenic using polymer-based hydrated iron oxide adsorbent:capacity evaluation and mechanism[J]. Science of the Total Environment, 2020, 742:140508.
    [13] CORNELL RM, SCHWERMANN U. The Iron Oxides:Structure, Properties, Reactions, Occurrences, and Uses[M]. Weinheim:Wiley-VCH, 2003:1-7.
    [14] QIAN ZY, WU C, HE X, XU SG. Study on the influence of iron redox cycling microorganisms on heavy metals in the environment[J]. Environmental Chemistry, 2021, 40(3):834-835.
    [15] 姚远, 周志华, 许旭萍, 衡琏, 李敏. 铁锰氧化菌的筛选及其生物学特性研究[J]. 福建师范大学学报(自然科学版), 2009, 25(4):100-104. YAO Y, ZHOU ZH, XU XP, HENG L, LI M. The selection of Fe2+ removing and Mn2+ removing bacteria and the study of biological characteristics[J]. Journal of Fujian Normal University (Natural Science Edition), 2009, 25(4):100-104(in Chinese).
    [16] 王佳佳, 刘冬梅, 王革娇, 李明顺. 睾丸酮丛毛单胞菌JL40中甲酸脱氢酶-O的锑抗性及锑氧化作用[J]. 化学与生物工程, 2017, 34(9):46-50, 60. WANG JJ, LIU DM, WANG GJ, LI MS. Antimony resistance and antimony oxidation of formate dehydrogenase-O in Comamonas testosteroni JL40[J]. Chemistry and Bioengineering, 2017, 34(9):46-50, 60(in Chinese).
    [17] TAMURA K, STECHER G, KUMAR S. MEGA11:molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7):3022-3027.
    [18] 国家环境保护总局. 水质铁的测定邻菲啰啉分光光度法:HJ/T 345-2007[S]. 北京:中国环境科学出版社, 2007. State Environmental Protection Administration of China. Water quality-Determination of iron-phenanthroline spectrophotometry:HJ/T 345-2007[S]. Beijing:China Environmental Science Press, 2007(in Chinese).
    [19] LIU Q, GUO HM, LI Y, XIANG H. Acclimation of arsenic-resistant Fe(II)-oxidizing bacteria in aqueous environment[J]. International Biodeterioration & Biodegradation, 2013, 76:86-91.
    [20] SUN PP, WANG XM, LIANG JR, ZHOU LX. Isolation and characterisation of Fe(II)-oxidising bacteria and their application in the removal of arsenic in an aqueous solution[J]. Environmental Technology, 2022:1-11.
    [21] LIAO SJ, ZHOU JX, WANG H, CHEN X, WANG HF, WANG GJ. Arsenite oxidation using biogenic manganese oxides produced by a deep-sea manganese-oxidizing bacterium, Marinobacter sp. MnI7-9[J]. Geomicrobiology Journal, 2013, 30(2):150-159.
    [22] 许旭萍, 杨冠彬, 王芳, 李敏. 假单胞菌产生铁氧化酶条件的研究[J]. 微生物学杂志, 2009, 29(4):16-19. XU XP, YANG GB, WANG F, LI M. Ferro-oxidase producing conditions of Pseudomonas sp.[J]. Journal of Microbiology, 2009, 29(4):16-19(in Chinese).
    [23] 陈淋霞, 张萌, 石佳佳, 张笛, 郭永, 包智华. 铁氧化菌耐砷机制及其砷污染修复应用的研究进展[J]. 微生物学通报, 2020, 47(9):3054-3064. CHEN LX, ZHANG M, SHI JJ, ZHANG D, GUO Y, BAO ZH. Advances in arsenic-resistant mechanism of Fe(II)-oxidizing bacteria and its arsenic pollution remediation applications[J]. Microbiology China, 2020, 47(9):3054-3064(in Chinese).
    [24] 林超峰, 龚骏. 嗜中性微好氧铁氧化菌研究进展[J]. 生态学报, 2012, 32(18):5889-5899. LIN CF, GONG J. Recent progress in research on neutrophilic, microaerophilic iron(Ⅱ)-oxidizing bacteria[J]. Acta Ecologica Sinica, 2012, 32(18):5889-5899(in Chinese).
    [25] KATSOYIANNIS IA, ZOUBOULIS AI. Application of biological processes for the removal of arsenic from groundwaters[J]. Water Research, 2004, 38(1):17-26.
    [26] KATSOYIANNIS I, ZOUBOULIS A, ALTHOFF H, BARTEL H. As(III) removal from groundwaters using fixed-bed upflow bioreactors[J]. Chemosphere, 2002, 47(3):325-332.
    [27] XIU W, GUO HM, LIU Q, LIU ZY, ZOU YE, ZHANG BG. Arsenic removal and transformation by Pseudomonas sp. strain GE-1-induced ferrihydrite:co-precipitation versus adsorption[J]. Water Air and Soil Pollution, 2015, 226(6):167.
    [28] WANG Q, QIN D, ZHANG SZ, WANG L, LI JX, RENSING C, McDERMOTT TR, WANG GJ. Fate of arsenate following arsenite oxidation in Agrobacterium tumefaciens GW4[J]. Environmental Microbiology, 2015, 17(6):1926-1940.
    [29] 翟芳婷, 李辉辉, 胥聪敏. 2507双相不锈钢在含铁氧化菌冷却水中的腐蚀行为[J]. 西安工业大学学报, 2015, 35(8):654-659. ZHAI FT, LI HH, XU CM. Corrosion behavior of 2507 duplex stainless steel in cooling water with different IOB contents[J]. Journal of Xi'an Technological University, 2015, 35(8):654-659(in Chinese).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

范霞,吕锐玲,王政,郑永良,史凯详,王革娇. 节杆菌FX8的分离筛选及其生物成矿除砷[J]. 微生物学通报, 2024, 51(1): 96-110

复制
分享
文章指标
  • 点击次数:206
  • 下载次数: 758
  • HTML阅读次数: 373
  • 引用次数: 0
历史
  • 收稿日期:2023-05-26
  • 录用日期:2023-07-08
  • 在线发布日期: 2024-01-02
  • 出版日期: 2024-01-20
文章二维码