科微学术

微生物学通报

肠道微生物与大肠癌相关性的研究进展
作者:
基金项目:

山西医学重点项目(2022XM25);山西省应用基础研究计划(201901D111431)


Research progress in the correlations between intestinal microorganisms and colorectal cancer
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [92]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    越来越多的研究表明,肠道微生物可以影响大肠癌的发生发展。例如,产肠毒素脆弱拟杆菌、具核梭杆菌等已被证实与晚期的大肠癌和患者生存率降低相关。肠道微生物变化可以导致肠道稳态破坏,菌群数量以及类别的变化会导致宿主产生复杂的病理生理反应过程,促进大肠癌的发生发展。因此需要研究肠道微生物如何破坏肠道屏障、介导物质代谢、产生炎症因子及激活信号转导通路以及如何造成肠道微生物生态失调从而加速疾病进程。通过研究肠道微生物与大肠癌之间的相互作用,可以对大肠癌的早期诊断、治疗和预后有所帮助。本文就目前肠道微生物与大肠癌相关机制和前沿治疗的研究现状作一综述。

    Abstract:

    A growing number of studies have shown that intestinal microorganisms can influence the development of colorectal cancer. For example, enterotoxigenic Bacteroides fragilis and Fusobacterium nucleatum have been proved to be associated with advanced colorectal cancer and reduced patient survival. Changes of intestinal flora can lead to the disturbance of intestinal homeostasis, and the changes in the number and species of bacteria can lead to complex pathophysiological processes in the host that promote the development of colorectal cancer. Therefore, researchers need to investigate how intestinal microorganisms damage the intestinal barrier, mediate the substance metabolism, produce inflammatory cytokines, and activate signaling pathways, and how the gut microbial ecological dysfunction accelerate the disease process. Probing into the interactions between intestinal microorganisms and colorectal cancer can contribute to the early diagnosis, treatment, and prognosis improvement of colorectal cancer. We reviewed the research progress in the mechanisms underlying the interactions between intestinal microorganisms and colorectal cancer and the cutting-edge therapies of colorectal cancer.

    参考文献
    [1] SCOTT AJ, ALEXANDER JL, MERRIFIELD CA, CUNNINGHAM D, JOBIN C, BROWN R, ALVERDY J, O’KEEFE SJ, GASKINS HR, TEARE J, YU J, HUGHES DJ, VERSTRAELEN H, BURTON J, O’TOOLE PW, ROSENBERG DW, MARCHESI JR, KINROSS JM. International cancer microbiome consortium consensus statement on the role of the human microbiome in carcinogenesis[J]. Gut, 2019, 68(9): 1624-1632.
    [2] SIEGEL RL, MILLER KD, WAGLE NS, JEMAL A. Cancer statistics, 2023[J]. CA: A Cancer Journal for Clinicians, 2023, 73(1): 17-48.
    [3] PROCHÁZKOVÁ N, FALONY G, DRAGSTED LO, LICHT TR, RAES J, ROAGER HM. Advancing human gut microbiota research by considering gut transit time[J]. Gut, 2023, 72(1): 180-191.
    [4] ZHANG ZP, BAHAJI AZAMI NL, LIU NN, SUN MY. Research progress of intestinal microecology in the pathogenesis of colorectal adenoma and carcinogenesis[J]. Technology in Cancer Research & Treatment, 2023, 22: 15330338221135938.
    [5] KUMAR A, ALI A, KAPARDAR RK, DAR GM, NIMISHA A, SHARMA AK, VERMA R, SATTAR RSA, AHMAD E, MAHAJAN B, SALUJA SS. Implication of gut microbes and its metabolites in colorectal cancer[J]. Journal of Cancer Research and Clinical Oncology, 2023, 149(1): 441-465.
    [6] THRIENE K, MICHELS KB. Human gut microbiota plasticity throughout the life course[J]. International Journal of Environmental Research and Public Health, 2023, 20(2): 1463.
    [7] SENCHUKOVA MA. Genetic heterogeneity of colorectal cancer and the microbiome[J]. World Journal of Gastrointestinal Oncology, 2023, 15(3): 443-463.
    [8] LI J, ZHANG AH, WU FF, WANG XJ. Alterations in the gut microbiota and their metabolites in colorectal cancer: recent progress and future prospects[J]. Frontiers in Oncology, 2022, 12: 841552.
    [9] 吴毅娟, 孙兴红, 郭海霞, 张相安. 基于免疫反应-肠道微生物轴探究大肠癌湿热蕴结病机的生物学内涵[J].中国实验方剂学杂志, 2023. DOI: 10.13422/j.cnki. syfjx.20231130. WU YJ, SUN XH, GUO HX, ZHANG XA. To explore biological connotation of pathogenesis of colorectal cancer due to damp-heat accumulation based on immune response-gut microbes axis[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2023. DOI: 10.13422/j.cnki.syfjx.20231130(in Chinese).
    [10] GILBERT JA, BLASER MJ, CAPORASO JG, JANSSON JK, LYNCH SV, KNIGHT R. Current understanding of the human microbiome[J]. Nature Medicine, 2018, 24(4): 392-400.
    [11] KIM K, CASTRO EJT, SHIM H, ADVINCULA JVG, KIM YW. Differences regarding the molecular features and gut microbiota between right and left colon cancer[J]. Annals of Coloproctology, 2018, 34(6): 280-285.
    [12] ZHONG MY, XIONG YB, YE ZJ, ZHAO JB, ZHONG LF, LIU Y, ZHU YK, TIAN LT, QIU XF, HONG XH. Microbial community profiling distinguishes left-sided and right-sided colon cancer[J]. Frontiers in Cellular and Infection Microbiology, 2020, 10: 498502.
    [13] RAJOKA MSR, SHI J, MEHWISH HM, ZHU J, LI Q, SHAO D, HUANG Q, YANG H. Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health[J]. Food Science and Human Wellness, 2017, 6(3): 121-130.
    [14] MIZUTANI S, YAMADA T, YACHIDA S. Significance of the gut microbiome in multistep colorectal carcinogenesis[J]. Cancer Science, 2020, 111(3): 766-773.
    [15] GUO QQ, QIN H, LIU XL, ZHANG XX, CHEN ZL, QIN TT, CHANG LL, ZHANG WZ. The emerging roles of human gut microbiota in gastrointestinal cancer[J]. Frontiers in Immunology, 2022, 13: 915047.
    [16] SAUS E, IRAOLA-GUZMÁN S, WILLIS JR, BRUNET-VEGA A, GABALDÓN T. Microbiome and colorectal cancer: roles in carcinogenesis and clinical potential[J]. Molecular Aspects of Medicine, 2019, 69: 93-106.
    [17] 魏晋鹏, 常峰. 肠道微生物与骨质疏松相关性的研究进展[J]. 微生物学通报, 2023, 50(2): 729-741. WEI JP, CHANG F. Advances in the relationship between gut microbiota and osteoporosis[J]. Microbiology China, 2023, 50(2): 729-741(in Chinese).
    [18] LI TT, HAN L, MA SM, LIN WJ, BA X, YAN JH, HUANG Y, TU SH, QIN K. Interaction of gut microbiota with the tumor microenvironment: a new strategy for antitumor treatment and traditional Chinese medicine in colorectal cancer[J]. Frontiers in Molecular Biosciences, 2023, 10: 1140325.
    [19] ESLAMI M, YOUSEFI B, KOKHAEI P, HEMATI M, NEJAD ZR, ARABKARI V, NAMDAR A. Importance of probiotics in the prevention and treatment of colorectal cancer[J]. Journal of Cellular Physiology, 2019, 234(10): 17127-17143.
    [20] PENG LY, LI ZR, GREEN RS, HOLZMAN IR, LIN J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in caco-2 cell monolayers[J]. The Journal of Nutrition, 2009, 139(9): 1619-1625.
    [21] ZENG HW. Mechanisms linking dietary fiber, gut microbiota and colon cancer prevention[J]. World Journal of Gastrointestinal Oncology, 2014, 6(2): 41.
    [22] SMITH PM, HOWITT MR, PANIKOV N, MICHAUD M, GALLINI CA, BOHLOOLY-Y M, GLICKMAN JN, GARRETT WS. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013, 341(6145): 569-573.
    [23] 刘龙, 苏文. 胃肠道微生态与肿瘤关系的研究进展[J]. 中国微生态学杂志, 2016, 28(11): 1349-1352.LIU L, SU W. The role of gastrointestinal microbiota in carcinogenesis: Research advance[J]. Chinese Journal of Microecology, 2016, 28(11): 1349-1352(in Chinese).
    [24] TOFALO R, COCCHI S, SUZZI G. Polyamines and gut microbiota[J]. Frontiers in Nutrition, 2019, 6: 16.
    [25] HESTERBERG R, CLEVELAND J, EPLING- BURNETTE P. Role of polyamines in immune cell functions[J]. Medical Sciences, 2018, 6(1): 22.
    [26] LATOUR YL, GOBERT AP, WILSON KT. The role of polyamines in the regulation of macrophage polarization and function[J]. Amino Acids, 2020, 52(2): 151-160.
    [27] TSVETIKOVA SA, KOSHEL EI. Microbiota and cancer: host cellular mechanisms activated by gut microbial metabolites[J]. International Journal of Medical Microbiology, 2020, 310(4): 151425.
    [28] CAI J, SUN L, GONZALEZ FJ. Gut microbiota- derived bile acids in intestinal immunity, inflammation, and tumorigenesis[J]. Cell Host & Microbe, 2022, 30(3): 289-300.
    [29] JIA W, XIE GX, JIA WP. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nature Reviews Gastroenterology & Hepatology, 2018, 15(2): 111-128.
    [30] KONG Y, BAI PS, SUN H, NAN KJ, CHEN NZ, QI XG. The deoxycholic acid targets miRNA-dependent CAC1 gene expression in multidrug resistance of human colorectal cancer[J]. The International Journal of Biochemistry & Cell Biology, 2012, 44(12): 2321-2332.
    [31] SHAH SA, VOLKOV Y, ARFIN Q, ABDEL-LATIF MM, KELLEHER D. Ursodeoxycholic acid inhibits interleukin beta 1 and deoxycholic acid-induced activation of NF-κB and AP-1 in human colon cancer cells[J]. International Journal of Cancer, 2006, 118(3): 532-539.
    [32] JALANDRA R, MAKHARIA GK, SHARMA M, KUMAR A. Inflammatory and deleterious role of gut microbiota-derived trimethylamine on colon cells[J]. Frontiers in Immunology, 2023, 13: 1101429.
    [33] TACCONI E, PALMA G, de BIASE D, LUCIANO A, BARBIERI M, de NIGRIS F, BRUZZESE F. Microbiota effect on trimethylamine N-oxide production: from cancer to fitness: a practical preventing recommendation and therapies[J]. Nutrients, 2023, 15(3): 563.
    [34] KIM EK, CHO JH, KIM E, KIM YJ. Ursodeoxycholic acid inhibits the proliferation of colon cancer cells by regulating oxidative stress and cancer stem-like cell growth[J]. PLoS One, 2017, 12(7): e0181183.
    [35] SÁNCHEZ-ALCOHOLADO L, ORDÓÑEZ R, OTERO A, PLAZA-ANDRADE I, LABORDA-ILLANES A, MEDINA JA, RAMOS-MOLINA B, GÓMEZ-MILLÁN J, QUEIPO-ORTUÑO MI. Gut microbiota-mediated inflammation and gut permeability in patients with obesity and colorectal cancer[J]. International Journal of Molecular Sciences, 2020, 21(18): 6782.
    [36] SCOTT SA, FU JJ, CHANG PV. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(32): 19376-19387.
    [37] DÍAZ-DÍAZ CJ, RONNEKLEIV-KELLY SM, NUKAYA M, GEIGER PG, BALBO S, DATOR R, MEGNA BW, CARNEY PR, BRADFIELD CA, KENNEDY GD. The aryl hydrocarbon receptor is a repressor of inflammation-associated colorectal tumorigenesis in mouse[J]. Annals of Surgery, 2016, 264(3): 429-436.
    [38] GUO FF, YU TC, HONG J, FANG JY. Emerging roles of hydrogen sulfide in inflammatory and neoplastic colonic diseases[J]. Frontiers in Physiology, 2016, 7: 156.
    [39] CHEN HY, TONG TY, LU SY, JI LH, XUAN BQ, ZHAO G, YAN YQ, SONG LH, ZHAO LC, XIE YL, LENG XX, ZHANG XY, CUI Y, CHEN XY, XIONG H, YU TC, LI XB, SUN TT, WANG Z, CHEN JX, et al. Urea cycle activation triggered by host-microbiota maladaptation driving colorectal tumorigenesis[J]. Cell Metabolism, 2023, 35(4): 651-666.e7.
    [40] GALON J, MLECNIK B, BINDEA G, ANGELL HK, BERGER A, LAGORCE C, LUGLI A, ZLOBEC I, HARTMANN A, BIFULCO C, NAGTEGAAL ID, PALMQVIST R, MASUCCI GV, BOTTI G, TATANGELO F, DELRIO P, MAIO M, LAGHI L, GRIZZI F, ASSLABER M, et al. Towards the introduction of the ‘immunoscore’ in the classification of malignant tumours[J]. The Journal of Pathology, 2014, 232(2): 199-209.
    [41] BENDING D, PADURARU A, DUCKER CB, PRIETO MARTÍN P, CROMPTON T, ONO M. A temporally dynamic Foxp3 autoregulatory transcriptional circuit controls the effector Treg programme[J]. The EMBO Journal, 2018: 1-16.
    [42] WANG KC, WU WR, WANG Q, YANG LY, BIAN XY, JIANG XW, LV LX, YAN R, XIA JF, HAN SY, LI LJ. The negative effect of Akkermansia muciniphila-mediated post-antibiotic reconstitution of the gut microbiota on the development of colitis-associated colorectal cancer in mice[J]. Frontiers in Microbiology, 2022, 13: 932047.
    [43] TANOUE T, MORITA S, PLICHTA DR, SKELLY AN, SUDA W, SUGIURA Y, NARUSHIMA S, VLAMAKIS H, MOTOO I, SUGITA K, SHIOTA A, TAKESHITA K, YASUMA-MITOBE K, RIETHMACHER D, KAISHO T, NORMAN JM, MUCIDA D, SUEMATSU M, YAGUCHI T, BUCCI V, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity[J]. Nature, 2019, 565(7741): 600-605.
    [44] MIMA K, SUKAWA Y, NISHIHARA R, QIAN ZR, YAMAUCHI M, INAMURA K, KIM SA, MASUDA A, NOWAK JA, NOSHO K, KOSTIC AD, GIANNAKIS M, WATANABE H, BULLMAN S, MILNER DA, HARRIS CC, GIOVANNUCCI E, GARRAWAY LA, FREEMAN GJ, DRANOFF G, et al. Fusobacterium nucleatum and T cells in colorectal carcinoma[J]. JAMA Oncology, 2015, 1(5): 653-661.
    [45] LONG XH, WONG CC, TONG L, CHU ESH, HO SZETO C, GO MYY, COKER OO, CHAN AWH, CHAN FKL, SUNG JJY, YU J. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity[J]. Nature Microbiology, 2019, 4(12): 2319-2330.
    [46] PARK J, KIM M, KANG SG, JANNASCH AH, COOPER B, PATTERSON J, KIM CH. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway[J]. Mucosal Immunology, 2015, 8(1): 80-93.
    [47] JIANG F, LIU M, WANG H, SHI G, CHEN B, CHEN T, YUAN X, ZHU P, ZHOU J, WANG Q, CHEN Y. Wu Mei Wan attenuates CAC by regulating gut microbiota and the NF-κB/IL6-STAT3 signaling pathway[J]. Biomedicine & Pharmacotherapy, 2020, 125: 109982.
    [48] LI D, CUI L, GAO Y, LI Y, TAN X, XU H. Fecal microbiota transplantation improves intestinal inflammation in mice with ulcerative colitis by modulating intestinal flora composition and down-regulating NF-κB signaling pathway[J]. Microbial Pathogenesis, 2022, 173: 105803.
    [49] YANG Y, WENG W, PENG J, HONG L, YANG L, TOIYAMA Y, GAO R, LIU M, YIN M, PAN C, LI H, GUO B, ZHU Q, WEI Q, MOYER MP, WANG P, CAI S, GOEL A, QIN H, MA Y. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor−κB, and up-regulating expression of microRNA-21[J]. Gastroenterology, 2017, 152(4): 851-866.e24.
    [50] ZHOU MY, YUAN W, YANG B, PEI W, MA J, FENG Q. Clostridium butyricum inhibits the progression of colorectal cancer and alleviates intestinal inflammation via the myeloid differentiation factor 88(MyD88)-nuclear factor-kappa B (NF-κB) signaling pathway[J]. Annals of Translational Medicine, 2022, 10(8): 478.
    [51] PENG C, OUYANG YB, LU NH, LI NS. The NF-κB signaling pathway, the microbiota, and gastrointestinal tumorigenesis: recent advances[J]. Frontiers in Immunology, 2020, 11: 1387.
    [52] ZHU YY, LI X. Advances of Wnt signalling pathway in colorectal cancer[J]. Cells, 2023, 12(3): 447.
    [53] KRISHNAMURTHY N, KURZROCK R. Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors[J]. Cancer Treatment Reviews, 2018, 62: 50-60.
    [54] FLANAGAN DJ, BARKER N, DI COSTANZO NS, MASON EA, GURNEY A, MENIEL VS, KOUSHYAR S, AUSTIN CR, ERNST M, PEARSON HB, BOUSSIOUTAS A, CLEVERS H, PHESSE TJ, VINCAN E. Frizzled-7 is required for Wnt signaling in gastric tumors with and without Apc mutations[J]. Cancer Research, 2019, 79(5): 970-981.
    [55] LUKE JJ, BAO RY, SWEIS RF, SPRANGER S, GAJEWSKI TF. WNT/β-catenin pathway activation correlates with immune exclusion across human cancers[J]. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2019, 25(10): 3074-3083.
    [56] ZHANG XL, LI CC, WU Y, CUI PL. The research progress of Wnt/β-catenin signaling pathway in colorectal cancer[J]. Clinics and Research in Hepatology and Gastroenterology, 2023, 47(3): 102086.
    [57] CHEN DF, JIN DC, HUANG SM, WU JY, XU MQ, LIU TY, DONG WX, LIU X, WANG SN, ZHONG WL, LIU Y, JIANG RH, PIAO MY, WANG BM, CAO HL. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota[J]. Cancer Letters, 2020, 469: 456-467.
    [58] MCKERNAN DP. Toll-like receptors and immune cell crosstalk in the intestinal epithelium[J]. AIMS Allergy and Immunology, 2019, 3(1): 13-31.
    [59] GAGNAIRE A, NADEL B, RAOULT D, NEEFJES J, GORVEL JP. Collateral damage: insights into bacterial mechanisms that predispose host cells to cancer[J]. Nature Reviews Microbiology, 2017, 15(2): 109-128.
    [60] RUBINSTEIN MR, BAIK JE, LAGANA SM, HAN RP, RAAB WJ, SAHOO D, DALERBA P, WANG TC, HAN YW. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1[J]. EMBO Reports, 2019, 20(4): e47638.
    [61] BUGGE M, BERGSTROM B, EIDE OK, SOLLI H, KJØNSTAD IF, STENVIK J, ESPEVIK T, NILSEN NJ. Surface Toll-like receptor 3 expression in metastatic intestinal epithelial cells induces inflammatory cytokine production and promotes invasiveness[J]. Journal of Biological Chemistry, 2017, 292(37): 15408-15425.
    [62] CAO YY, WANG ZH, YAN YQ, JI LH, HE J, XUAN BQ, SHEN CQ, MA YR, JIANG SS, MA D, TONG TY, ZHANG XY, GAO ZY, ZHU XQ, FANG JY, CHEN HY, HONG J. Enterotoxigenic bacteroidesfragilis promotes intestinal inflammation and malignancy by inhibiting exosome-packaged miR-149-3p[J]. Gastroenterology, 2021, 161(5): 1552-1566.e12.
    [63] CLAY SL, FONSECA-PEREIRA D, GARRETT WS. Colorectal cancer: the facts in the case of the microbiota[J]. The Journal of Clinical Investigation, 2022, 132(4): e155101.
    [64] WU N, FENG YQ, LYU N, WANG D, YU WD, HU YF. Fusobacterium nucleatum promotes colon cancer progression by changing the mucosal microbiota and colon transcriptome in a mouse model[J]. World Journal of Gastroenterology, 2022, 28(18): 1981-1995.
    [65] ARONIADIS OC, BRANDT LJ. Fecal microbiota transplantation[J]. Current Opinion in Gastroenterology, 2013, 29(1): 79-84.
    [66] ZENG J, LI M, XU JY, XIAO H, YANG X, FAN JX, WU K, CHEN S. Aberrant ROS mediate cell cycle and motility in colorectal cancer cells through an oncogenic CXCL14 signaling pathway[J]. Frontiers in Pharmacology, 2021, 12: 764015.
    [67] SHENG J, SUN H, YU FB, LI B, ZHANG Y, ZHU YT. The role of cyclooxygenase-2 in colorectal cancer[J]. International Journal of Medical Sciences, 2020, 17(8): 1095-1101.
    [68] MOLINARO R, CORBO C, LIVINGSTON M, EVANGELOPOULOS M, PARODI A, BOADA C, AGOSTINI M, TASCIOTTI E. Inflammation and cancer: in medio stat nano[J]. Current Medicinal Chemistry, 2018, 25(34): 4208-4223.
    [69] BRANDSMA E, KLOOSTERHUIS NJ, KOSTER M, DEKKER DC, GIJBELS MJJ, van der VELDEN S, RÍOS-MORALES M, van FAASSEN MJR, LORETI MG, de BRUIN A, FU JY, KUIPERS F, BAKKER BM, WESTERTERP M, de WINTHER MPJ, HOFKER MH, van de SLUIS B, KOONEN DPY. A proinflammatory gut microbiota increases systemic inflammation and accelerates atherosclerosis[J]. Circulation Research, 2019, 124(1): 94-100.
    [70] CHENG WT, KANTILAL HK, DAVAMANI F. The mechanism of Bacteroides fragilis toxin contributes to colon cancer formation[J]. The Malaysian Journal of Medical Sciences: MJMS, 2020, 27(4): 9-21.
    [71] WANG LJ, TANG L, FENG YM, ZHAO SY, HAN M, ZHANG C, YUAN GH, ZHU J, CAO SY, WU Q, LI L, ZHANG Z. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice[J]. Gut, 2020, 69(11): 1988-1997.
    [72] 袁龙, 赵盼, 管静芝. 肠道微生物与结直肠癌发生发展关系的研究进展[J]. 传染病信息, 2016, 29(5): 307-311. YUAN L, ZHAO P, GUAN JZ. Recent research on the relationship between the intestinal microorganisms and the occurrence and development of colorectal cancer[J]. Infectious Disease Information, 2016, 29(5): 307-311(in Chinese).
    [73] WU SG, RHEE KJ, ALBESIANO E, RABIZADEH S, WU XQ, YEN HR, HUSO DL, BRANCATI FL, WICK E, MCALLISTER F, HOUSSEAU F, PARDOLL DM, SEARS CL. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses[J]. Nature Medicine, 2009, 15(9): 1016-1022.
    [74] SIVAMARUTHI BS, KESIKA P, CHAIYASUT C. The role of probiotics in colorectal cancer management[J]. Evidence-Based Complementary and Alternative Medicine, 2020, 2020: 1-17.
    [75] QUÉVRAIN E, MAUBERT MA, MICHON C, CHAIN F, MARQUANT R, TAILHADES J, MIQUEL S, CARLIER L, BERMÚDEZ-HUMARÁN LG, PIGNEUR B, LEQUIN O, KHARRAT P, THOMAS G, RAINTEAU D, AUBRY C, BREYNER N, AFONSO C, LAVIELLE S, GRILL JP, CHASSAING G, et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease[J]. Gut, 2016, 65(3): 415-425.
    [76] LIU Z, QIN H, YANG Z, XIA Y, LIU W, YANG J, JIANG Y, ZHANG H, YANG Z, WANG Y, ZHENG Q. Randomised clinical trial: the effects of perioperative probiotic treatment on barrier function and post-operative infectious complications in colorectal cancer surgery–a double-blind study[J]. Alimentary Pharmacology & Therapeutics, 2011, 33(1): 50-63.
    [77] 刘炎. 肠道微生物群落与晚期大肠癌化疗患者预后的关系[J]. 中国微生态学杂志, 2021, 33(8): 958-961, 966. LIU Y. Relationship between intestinal microbial community and prognosis in patients with advanced colorectal cancer chemotherapy[J]. Chinese Journal of Microecology, 2021, 33(8): 958-961, 966(in Chinese).
    [78] ABBASI A, RAD AH, MALEKI LA, KAFIL HS, BAGHBANZADEH A. Antigenotoxicity and cytotoxic potentials of cell-free supernatants derived from Saccharomyces cerevisiae var. boulardii on HT-29 human colon cancer cell lines[J]. Probiotics and Antimicrobial Proteins, 2023: 1-13.
    [79] ELHAM N, NAHEED M, ELAHE M, HOSSEIN MM, MAJID T. Selective cytotoxic effect of probiotic, paraprobiotic and postbiotics of L. casei strains against colorectal cancer cells: in vitro studies[J]. Brazilian Journal of Pharmaceutical Sciences, 2022, https://doi.org/10.1590/s2175-97902022e19400.
    [80] ZHANG SL, MAO YQ, ZHANG ZY, LI ZM, KONG CY, CHEN HL, CAI PR, HAN B, YE T, WANG LS. Pectin supplement significantly enhanced the anti-PD-1 efficacy in tumor-bearing mice humanized with gut microbiota from patients with colorectal cancer[J]. Theranostics, 2021, 11(9): 4155-4170.
    [81] BELL HN, REBERNICK RJ, GOYERT J, SINGHAL R, KULJANIN M, KERK SA, HUANG W, DAS NK, ANDREN A, SOLANKI S, MILLER SL, TODD PK, FEARON ER, LYSSIOTIS CA, GYGI SP, MANCIAS JD, SHAH YM. Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance[J]. Cancer Cell, 2022, 40(2): 185-200.e6.
    [82] 唐琳, 刘波. 肠道菌群在结直肠癌发病与治疗中的研究进展[J]. 山东医药, 2022, 62(10): 101-104. TANG L, LIU B. Research progress of intestinal flora in the pathogenesis and treatment of colorectal cancer[J]. Shandong Medical Journal, 2022, 62(10): 101-104(in Chinese).
    [83] ROSSHART SP, VASSALLO BG, ANGELETTI D, HUTCHINSON DS, MORGAN AP, TAKEDA K, HICKMAN HD, MCCULLOCH JA, BADGER JH, AJAMI NJ, TRINCHIERI G, PARDO-MANUEL de VILLENA F, YEWDELL JW, REHERMANN B. Wild mouse gut microbiota promotes host fitness and improves disease resistance[J]. Cell, 2017, 171(5): 1015-1028.e13.
    [84] HUANG JY, ZHENG X, KANG WY, HAO HJ, MAO YD, ZHANG H, CHEN Y, TAN Y, HE YL, ZHAO WJ, YIN YM. Metagenomic and metabolomic analyses reveal synergistic effects of fecal microbiota transplantation and anti-PD-1 therapy on treating colorectal cancer[J]. Frontiers in Immunology, 2022, 13: 874922.
    [85] 崔霞, 刘晓芳, 武金宝. 肠道微生物稳态失衡与肠道疾病的关系研究进展[J]. 包头医学院学报, 2021, 37(10): 77-81. CUI X, LIU XF, WU JB. Research progress on the relationship between intestinal microbial homeostasis imbalance and intestinal diseases[J]. Journal of Baotou Medical College, 2021, 37(10): 77-81(in Chinese).
    [86] DUBIN K, CALLAHAN MK, REN BY, KHANIN R, VIALE A, LING LL, NO D, GOBOURNE A, LITTMANN E, HUTTENHOWER C, PAMER EG, WOLCHOK JD. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis[J]. Nature Communications, 2016, 7: 10391.
    [87] YANG XX, GUO YX, CHEN C, SHAO B, ZHAO LY, ZHOU QB, LIU JB, WANG GX, YUAN WT, SUN ZQ. Interaction between intestinal microbiota and tumour immunity in the tumour microenvironment[J]. Immunology, 2021, 164(3): 476-493.
    [88] GAO YH, BI DX, XIE RT, LI M, GUO J, LIU H, GUO XL, FANG JM, DING TT, ZHU HY, CAO Y, XING MC, ZHENG JY, XU Q, XU Q, WEI Q, QIN HL. Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer[J]. Signal Transduction and Targeted Therapy, 2021, 6: 398.
    [89] CAI P, XIONG JB, SHA HN, DAI XY, LU JQ. Tumor bacterial markers diagnose the initiation and four stages of colorectal cancer[J]. Frontiers in Cellular and Infection Microbiology, 2023, 13: 1123544.
    [90] BREZINA S, BORKOVEC M, BAIERL A, BASTIAN F, FUTSCHIK A, GASCHE N, GRUENBERGER T, HALLAS M, JANNSEN C, LEEB G, LUTZ R, SLADEK B, GSUR A. Using fecal immmunochemical cartridges for gut microbiome analysis within a colorectal cancer screening program[J]. Gut Microbes, 2023, 15(1): 2176119.
    [91] ZHOU P, YANG DX, SUN DS, ZHOU YP. Gut microbiome: new biomarkers in early screening of colorectal cancer[J]. Journal of Clinical Laboratory Analysis, 2022, 36(5): e24359.
    [92] AMINI M, REZASOLTANI S, POURHOSEINGHOLI MA, ASADZADEH AGHDAEI H, ZALI MR. Evaluating the predictive performance of gut microbiota for the early-stage colorectal cancer[J]. BMC Gastroenterology, 2022, 22(1): 1-11.
    相似文献
    引证文献
引用本文

王臻琪,李耀平. 肠道微生物与大肠癌相关性的研究进展[J]. 微生物学通报, 2023, 50(12): 5548-5562

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-21
  • 录用日期:2023-06-23
  • 在线发布日期: 2023-12-06
  • 出版日期: 2023-12-20
文章二维码