科微学术

微生物学通报

低温刺激对食用菌子实体形成的研究进展
作者:
基金项目:

国家自然科学基金(32072642,32172648)


Advances in low temperature stimulation for the fruiting body formation of edible fungi
Author:
  • HUANG Tianyu

    HUANG Tianyu

    Southern Key Laboratory of Edible Fungus Resource Utilization, Ministry of Agriculture and Rural Affairs;National Engineering Research Center of Edible Fungi;National R&D Center for Edible Fungal Processing, Key Laboratory of Agricultural Genetics and Breeding of Shanghai;Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;School of Ocean Food and Biological Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHENG Tingting

    ZHENG Tingting

    Southern Key Laboratory of Edible Fungus Resource Utilization, Ministry of Agriculture and Rural Affairs;National Engineering Research Center of Edible Fungi;National R&D Center for Edible Fungal Processing, Key Laboratory of Agricultural Genetics and Breeding of Shanghai;Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GONG Ming

    GONG Ming

    Southern Key Laboratory of Edible Fungus Resource Utilization, Ministry of Agriculture and Rural Affairs;National Engineering Research Center of Edible Fungi;National R&D Center for Edible Fungal Processing, Key Laboratory of Agricultural Genetics and Breeding of Shanghai;Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GUO Ting

    GUO Ting

    Southern Key Laboratory of Edible Fungus Resource Utilization, Ministry of Agriculture and Rural Affairs;National Engineering Research Center of Edible Fungi;National R&D Center for Edible Fungal Processing, Key Laboratory of Agricultural Genetics and Breeding of Shanghai;Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Fuhou

    LI Fuhou

    School of Ocean Food and Biological Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Weixia

    WANG Weixia

    School of Ocean Food and Biological Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Zhengpeng

    LI Zhengpeng

    Southern Key Laboratory of Edible Fungus Resource Utilization, Ministry of Agriculture and Rural Affairs;National Engineering Research Center of Edible Fungi;National R&D Center for Edible Fungal Processing, Key Laboratory of Agricultural Genetics and Breeding of Shanghai;Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • TANG Lihua

    TANG Lihua

    Southern Key Laboratory of Edible Fungus Resource Utilization, Ministry of Agriculture and Rural Affairs;National Engineering Research Center of Edible Fungi;National R&D Center for Edible Fungal Processing, Key Laboratory of Agricultural Genetics and Breeding of Shanghai;Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [115]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    探究低温刺激子实体形成过程的组学数据能为食用菌的工厂化低碳高效栽培及广温型品种的选育提供参考。本文首先通过主成分分析对食用菌低温刺激子实体形成的类型进行低温型(11−19 ℃)和冷压型的划分(≤10 ℃)。在此基础上,综述了食用菌两种类型的低温刺激子实体形成过程的研究进展。食用菌低温刺激子实体形成过程中都涉及信号转导、胁迫响应、基础代谢、细胞分化、细胞结构变化等代谢过程。随着低温型到冷压型的刺激温度下降,糖代谢可能转向脂代谢为子实体形成提供能量。

    Abstract:

    Exploring the process of low temperature stimulating fruiting body formation (LSFF) can provide a reference for the industrialized low-carbon efficient cultivation of edible fungi and the breeding of varieties with wide temperature ranges. This study first performed principal component analysis to classify LSFF of edible fungi into the low-temperature type (11−19 °C) and the cold stress type (≤10°C). On this basis, the research progress in the two types of LSFF in edible fungi was reviewed. The LSFF in edible fungi involves the metabolic processes such as signal transduction, stress response, basic metabolism, cell differentiation, and cell structure changes. With the decrease in the stimulation temperature from the low-temperature type to cold stress type, the sugar metabolism may shift to lipid metabolism to provide energy for fruiting body formation.

    参考文献
    [1] 汤昕明, 冯云利, 郭相, 马明, 陈正启, 吴素蕊. 我国食药用菌栽培现状分析及展望[J]. 北方园艺, 2019(8): 148-153. TANG XM, FENG YL, GUO X, MA M, CHEN ZQ, WU SR. Current situation and development trend of edible medicinal fungi in China[J]. Northern Horticulture, 2019(8): 148-153(in Chinese).
    [2] 中国食用菌协会. 2021年度全国食用菌统计调查结果分析[J]. 中国食用菌, 2023, 42(1): 118-127. China Edible Fungi Association. Analysis on the results of national edible fungi statistical survey in 2021[J]. Edible Fungi of China, 2023, 42(1): 118-127(in Chinese).
    [3] 梁宇庭, 周骏辉, 袁媛, 赵玉洋, 黄璐琦. 环境胁迫影响药用真菌生长及生理生化机制的研究进展[J]. 中国现代中药, 2017, 19(12): 1780-1784. LIANG YT, ZHOU JH, YUAN Y, ZHAO YY, HUANG LQ. Research progress on growth and metabolism changes under environmental stress of medicinal fungi[J]. Modern Chinese Medicine, 2017, 19(12):1780-1784(in Chinese).
    [4] 李玉, 于海龙, 周峰, 王瑞娟, 李正鹏, 郭倩. 光照对食用菌生长发育影响的研究进展[J]. 食用菌, 2011, 33(2): 3-4. LI Y, YU HL, ZHOU F, WANG RJ, LI ZP, GUO Q. Advances in researching for the effect of illumination on the growth and development of edible fungi[J]. Edible Fungi, 2011, 33(2): 3-4(in Chinese).
    [5] YANG HP, LEI MG, HUANG L, WANG Y, SUN N, BAN L, WANG XF, ZHANG HY. Study on the effects of environmental factors on enzyme activities during growth of Hypsizygus marmoreus[J]. PLoS One, 2022, 17(8): e0268107.
    [6] 周烁红. 秀珍菇变温结实相关Ppcsl-1基因的克隆及表达分析[D]. 金华: 浙江师范大学硕士学位论文, 2016. ZHOU SH. Cloning and expression analysis of Ppcsl-1 gene related to variable temperature fruiting of Pleurotus geesteranus[D]. Jinhua: Master’s Thesis of Zhejiang Normal University, 2016(in Chinese).
    [7] 王海燕, 孙国琴, 庞杰, 解亚杰, 李亚娇. 环境胁迫对食用菌生长发育影响的研究进展[J]. 食药用菌, 2017, 25(2): 110-112. WANG HY, SUN GQ, PANG J, XIE YJ, LI YJ. Research progress on the influence of environmental stress on the growth and development of edible fungi[J]. Edible and Medicinal Mushrooms, 2017, 25(2): 110-112(in Chinese).
    [8] 王再明, 石堃, 潘玲玲, 马玉心, 崔大练. 温度对8种食用菌菌丝生长的影响[J]. 林业科技, 2015, 40(3): 20-23. WANG ZM, SHI K, PAN LL, MA YX, CUI DL. The influence of temperature on mycelial growth of eight kinds of food[J]. Forestry Science & Technology, 2015, 40(3): 20-23(in Chinese).
    [9] GONG M, WANG Y, BAO DP, JIANG S, CHEN HY, SHANG JJ, WANG XJ, HNIN YU H, ZOU G. Improving cold-adaptability of mesophilic cellulase complex with a novel mushroom cellobiohydrolase for efficient low-temperature ensiling[J]. Bioresource Technology, 2023, 376: 128888.
    [10] 张介驰, 韩增华, 张丕奇, 马银鹏, 王玉文, 陈鹤. 发菌温度对黑木耳菌丝和子实体生长的影响[J]. 食用菌学报, 2014, 21(2): 36-40. ZHANG JC, HAN ZH, ZHANG PQ, MA YP, WANG YW, CHEN H. Effects of cultivation temperature on auriculariaauricula-judae mycelial growth and fruit body development[J]. Acta Edulis Fungi, 2014, 21(2): 36-40(in Chinese).
    [11] 田景花, 赵润鹏, 李明, 李守勉. 温度和湿度对杏鲍菇子实体原基分化的影响[J]. 湖北农业科学, 2013, 52(20): 4975-4976, 4990. TIAN JH, ZHAO RP, LI M, LI SM. Effects of temperature and humidity on fruitbody primordium differentiation of Pleurotus eryngii[J]. Hubei Agricultural Sciences, 2013, 52(20): 4975-4976, 4990(in Chinese).
    [12] 刘雁英, 李林辉, 谢富刚, 邱慧兰. 食用菌子实体分化发育研究进展[J]. 菌物研究, 2010, 8(1): 57-62. LIU YY, LI LH, XIE FG, QIU HL. Advances of research on fruiting body formation and development of edible fungi[J]. Journal of Fungal Research, 2010, 8(1): 57-62(in Chinese).
    [13] 余颖豪, 伍土恒, 叶志伟, 陈柏雄, 郭丽琼, 林俊芳. 基于转录组分析的金针菇冷诱导原基形成的调控网络[J]. 菌物学报, 2020, 39(6): 1065-1076. YU YH, WU TH, YE ZW, CHEN BX, GUO LQ, LIN JF. Regulation network of cold-induced primordium formation of Flammulina velutipes based on transcriptome analysis[J]. Mycosystema, 2020, 39(6): 1065-1076(in Chinese).
    [14] 庞杰, 孙国琴, 于静, 孟虎, 王海燕, 刘燕, 杨志刚. 35种食用菌菌丝生长和子实体分化温度的聚类分析[J]. 中国食用菌, 2015, 34(6): 34-37, 41. PANG J, SUN GQ, YU J, MENG H, WANG HY, LIU Y, YANG ZG. Cluster analysis based on the growth temperature of 35 edible fungi[J]. Edible Fungi of China, 2015, 34(6): 34-37, 41(in Chinese).
    [15] WEISER CJ. Cold Resistance and Injury in Woody Plants: knowledge of hardy plant adaptations to freezing stress may help us to reduce winter damage[J]. Science, 1970, 169(3952): 1269-1278.
    [16] 龚明, 汪滢, 尚俊军, 唐利华, 尚晓冬, 张劲松, 谭琦, 鲍大鹏. 食药用菌系统演化及多组学研究进展[J]. 食用菌学报, 2018, 25(4): 85-96. GONG M, WANG Y, SHANG JJ, TANG LH, SHANG XD, ZHANG JS, TAN Q, BAO DP. Advances in phylogeny and multi-omics of edible and medicinal fungi[J]. Acta Edulis Fungi, 2018, 25(4): 85-96(in Chinese).
    [17] 赵凤霞, 高相彬, 王正平, 李海峰, 宋学立, 冀敏. 蛋白质组学技术在烟草研究中的应用进展[J]. 中国烟草学报, 2014, 20(1): 103-110. ZHAO FX, GAO XB, WANG ZP, LI HF, SONG XL, JI M. Research and application of proteomics in tobacco[J]. Acta Tabacaria Sinica, 2014, 20(1): 103-110(in Chinese).
    [18] 余金凤, 周汐, 赵春燕, 陈正启, 吴素蕊. 食用菌基因组学研究进展[J]. 蔬菜, 2017(3): 33-38. YU JF, ZHOU X, ZHAO CY, CHEN ZQ, WU SR. Research progress of edible fungi genomics[J]. Vegetables, 2017(3): 33-38(in Chinese).
    [19] 刘红, 黄建军, 贺月林. 食用菌的温型及周年生产技术[J]. 现代农业科技, 2010(17): 147-148. LIU H, HUANG JJ, HE YL. Warm type and annual production technology of edible fungi[J]. Xiandai Nongye Keji, 2010(17): 147-148(in Chinese).
    [20] 孔维威, 康源春, 胡素娟, 宋志波, 袁瑞奇, 韩玉娥, 张玉亭. 冷刺激温度和时间对瓶栽白灵菇子实体形成的影响[J]. 食药用菌, 2021, 29(2): 141-143. KONG WW, KANG YC, HU SJ, SONG ZB, YUAN RQ, HAN Y, ZHANG YT. Effect of temperature and time of cold stimulation on fruiting bodies formation of Pleurotus uoliensis under industrial bottle cultivation[J]. Edible and Medicinal Mushrooms, 2021, 29(2): 141-143(in Chinese).
    [21] 姬婧, 蒋学杰. 姬菇栽培技术[J]. 特种经济动植物, 2020, 23(8): 39. JI J, JIANG XJ. Cultivation techniques of Pleurotus cornucopiae[J]. Special Economic Animal and Plant, 2020, 23(8): 39(in Chinese).
    [22] 马建昌, 马小剑. 羊肚菌温室大棚种植技术要点[J]. 农业技术与装备, 2022(4): 136-138, 141. MA JC, MA XJ. Cultivation techniques of Morchella in greenhouse[J]. Agricultural Technology & Equipment, 2022(4): 136-138, 141(in Chinese).
    [23] 赵书光, 李正鹏, 李玉, 张亚丽, 张翠娥, 徐相如. 杏鲍菇智能化高效生产关键技术研究[J]. 上海蔬菜, 2020(2): 65-67. ZHAO SG, LI ZP, LI Y, ZHANG YL, ZHANG CE, XU XR. Study on key technologies of intelligent and efficient production of Pleurotus eryngii[J]. Shanghai Vegetables, 2020(2): 65-67(in Chinese).
    [24] 刘朋虎, 曾维源, 林占熺. 巨菌草工厂化栽培秀珍菇技术初探[J]. 食用菌, 2021, 43(2): 54-55. LIU PH, ZENG WY, LIN ZX. Preliminary study on industrial cultivation technology of Pleurotus geesteranus by giant weed[J]. Edible Fungi, 2021, 43(2): 54-55(in Chinese).
    [25] 邬俊财, 张忠伟, 薛光艳, 邬昕彤, 于洋, 殷竹芬, 乔黎明. 蜜环菌(榛蘑)林地栽培技术[J]. 辽宁林业科技, 2009(3): 61-62. WU JC, ZHANG ZW, XUE GY, WU XT, YU Y, YIN ZF, QIAO LM. Planting techniques of Armillaria mellea on forest lands[J]. Liaoning Forestry Science and Technology, 2009(3): 61-62(in Chinese).
    [26] 许泽成, 余悦, 尹龙川, 任美瑶. 北方元蘑冬季出菇栽培技术[J]. 食用菌, 2021, 43(2): 46-48. XU ZC, YU Y, YIN LC, REN MY. Cultivation techniques of northern yuanmo in winter[J]. Edible Fungi, 2021, 43(2): 46-48(in Chinese).
    [27] 赖淑芳. 真姬菇工厂化栽培技术分析[J]. 农业与技术, 2021, 41(7): 98-100. LAI SF. Analysis of industrial cultivation techniques in Hypsizygus marmoreus[J]. Agriculture & Technology, 2021, 41(7): 98-100(in Chinese).
    [28] 马宇生, 张利鹏. 大肥蘑菇低温型菌株的生物特性及其驯化栽培[J]. 食用菌, 2010, 32(6): 25-26. MA YS, ZHANG LP. Biological characteristics and domestication cultivation of low temperature strain of big fat mushroom[J]. Edible Fungi, 2010, 32(6): 25-26(in Chinese).
    [29] de OLIVEIRA JMPF, de GRAAFF LH. Proteomics of industrial fungi: trends and insights for biotechnology[J]. Applied Microbiology and Biotechnology, 2011, 89(2): 225-237.
    [30] HAJELA RK, HORVATH DP, GILMOUR SJ, THOMASHOW MF. Molecular cloning and expression of cor (cold-regulated) genes in Arabidopsis thaliana[J]. Plant Physiology, 1990, 93(3): 1246-1252.
    [31] 黄桂英. 真姬菇低温胁迫下菌丝体酶活变化及差异蛋白质组学研究[D]. 福州: 福建农林大学硕士学位论文, 2008. HUANG GY. Changes and differences of enzyme activities of mycelium under low temperature stress in Hypsizygus marmoreus: a protein omics study[D]. Fuzhou: Master’s Thesis of Fujian Agriculture and Forestry University, 2008(in Chinese).
    [32] BAHN YS, XUE CY, IDNURM A, RUTHERFORD JC, HEITMAN J, CARDENAS ME. Sensing the environment: lessons from fungi[J]. Nature Reviews Microbiology, 2007, 5(1): 57-69.
    [33] YAMAGISHI K, KIMURA T, SUZUKI M, SHINMOTO H. Suppression of fruit-body formation by constitutively active G-protein α-subunits ScGP-A and ScGP-C in the homobasidiomycete Schizophyllum commune the GenBank accession numbers for the sequences reported in this paper are AB066503, AB051903 and AB051904[J]. Microbiology, 2002, 148(9): 2797-2809.
    [34] CAO JX, SUN MJ, YU MM, XU YF, XIE JC, ZHANG HR, CHEN JY, XU T, QIAN X, SUN SJ. Transcriptome analysis reveals the function of a G-protein α subunit gene in the growth and development of Pleurotus eryngii[J]. Journal of Fungi, 2023, 9(1): 69.
    [35] 卢园萍. 腺苷酸环化酶对金针菇菌丝生长和子实体形成的调控[D]. 福州: 福建农林大学博士学位论文, 2016. LU YP. Regulation of adenylate cyclase on mycelium growth and fruiting body formation of Flammulina velutipes[D]. Fuzhou: Doctoral Dissertation of Fujian Agriculture and Forestry University, 2016(in Chinese).
    [36] YE D, DU F, ZOU YJ, HU QX. Transcriptomics analysis of primordium formation in Pleurotus eryngii[J]. Genes, 2021, 12(12): 1863.
    [37] 易勇. 水稻锌指蛋白OsC3H54互作蛋白鉴定[D]. 荆州: 长江大学硕士学位论文, 2021. YI Y. Identification of rice zinc finger protein OsC3H54 interacting protein[D]. Jingzhou: Master’s Thesis of Yangtze University, 2021(in Chinese).
    [38] LIU YH, KHAN AR, GAN YB. C2H2 zinc finger proteins response to abiotic stress in plants[J]. International Journal of Molecular Sciences, 2022, 23(5): 2730.
    [39] 吴小梅, 张昕, 李南羿. 双孢蘑菇子实体不同发育时期的转录组分析[J]. 菌物学报, 2017, 36(2): 193-203. WU XM, ZHANG X, LI NY. Transcriptome analysis of Agaricus bisporus fruiting at different stages[J]. Mycosystema, 2017, 36(2): 193-203(in Chinese).
    [40] PELKMANS JF, VOS AM, SCHOLTMEIJER K, HENDRIX E, BAARS JJP, GEHRMANN T, REINDERS MJT, LUGONES LG, WÖSTEN HAB. The transcriptional regulator c2h2 accelerates mushroom formation in Agaricus bisporus[J]. Applied Microbiology and Biotechnology, 2016, 100(16): 7151-7159.
    [41] ZHANG X, GUO XP, LEI CL, CHENG ZJ, LIN QB, WANG JL, WU FQ, WANG J, WAN JM. Overexpression of SlCZFP1, a novel TFIIIA-type zinc finger protein from tomato, confers enhanced cold tolerance in transgenic Arabidopsis and rice[J]. Plant Molecular Biology Reporter, 2011, 29(1): 185-196.
    [42] HAN GL, LU CX, GUO JR, QIAO ZQ, SUI N, QIU NW, WANG BS. C2H2 zinc finger proteins: master regulators of abiotic stress responses in plants[J]. Frontiers in Plant Science, 2020, 11: 115.
    [43] ZNAMEROSKI EA, CORADETTI ST, ROCHE CM, TSAI JC, IAVARONE AT, CATE JHD, GLASS NL. Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6012-6017.
    [44] NAKAZAWA T, MIYAZAKI Y, KANEKO S, SHISHIDO K. Stimulative effects of light and a temperature downshift on transcriptional expressions of developmentally regulated genes in the initial stages of fruiting-body formation of the basidiomycetous mushroom Lentinula edodes[J]. FEMS Microbiology Letters, 2008, 289(1): 67-71.
    [45] KISHIKAWA A, HAMADA S, KAMEI I, FUJIMOTO Y, MIYAZAKI K, YOSHIDA M. A novel gene, Le-Dd10, is involved in fruiting body formation of Lentinula edodes[J]. Archives of Microbiology, 2022, 204(10): 1-13.
    [46] WU TJ, HU CC, XIE BG, WEI SL, ZHANG L, ZHU ZX, ZHANG ZY, LI SJ. A putative transcription factor LFC1 negatively regulates development and yield of winter mushroom[J]. Applied Microbiology and Biotechnology, 2020, 104(13): 5827-5844.
    [47] 乌凤章, 王贺新. 蛋白质泛素化介导的植物低温胁迫反应[J]. 生物技术通报, 2021, 37(6): 225-235. WU FZ, WANG HX. Low temperature stress response mediated by protein ubiquitination in plant[J]. Biotechnology Bulletin, 2021, 37(6): 225-235(in Chinese).
    [48] GONG M, LI ZP, WAN JN, CHEN MJ, WANG H, SHANG JJ, ZHOU SC, TAN Q, WANG Y, BAO DP. Chilling stress reduced protein translation by the ubiquitination of ribosomal proteins in Volvariella volvacea[J]. Journal of Proteomics, 2020, 215: 103668.
    [49] HENSOLD JO, SWERDLOW PS, HOUSMAN DE. A transient increase in histone H2A ubiquitination is coincident with the onset of erythroleukemic cell differentiation[J]. Blood, 1988, 71(4): 1153-1156.
    [50] KANDA T, TANAKA N, TAKEMARU T. Ubiquitin immunoreactivity shows several proteins varying with development and sporulation in the basidiomycete Coprinus cinereus[J]. Biochemistry and Cell Biology, 1990, 68(7/8): 1019-1025.
    [51] YANG XQ, LIN RM, XU K, GUO LZ, YU H. Comparative proteomic analysis within the developmental stages of the mushroom white Hypsizygus marmoreus[J]. Journal of Fungi, 2021, 7(12): 1064.
    [52] CHAE E, TAN QKG, HILL TA, IRISH VF. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development[J]. Development, 2008, 135(7): 1235-1245.
    [53] KRIZSÁN K, ALMÁSI É, MERÉNYI Z, SAHU N, VIRÁGH M, KÓSZÓ T, MONDO S, KISS B, BÁLINT B, KÜES U, BARRY K, CSEKLYE J, HEGEDÜS B, HENRISSAT B, JOHNSON J, LIPZEN A, OHM RA, NAGY I, PANGILINAN J, YAN JY, et al. Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(15): 7409-7418.
    [54] GONG M, HUANG TY, LI Y, LI JX, TANG LH, SU EZ, ZOU G, BAO DP. Multi-omics analysis of low-temperature fruiting highlights the promising cultivation application of the nutrients accumulation in Hypsizygus marmoreus[J]. Journal of Fungi, 2022, 8(7): 695.
    [55] WANG ST, LI WL, LIU L, QI H, YOU H. Biodegradation of decabromodiphenyl ethane (DBDPE) by white-rot fungus Pleurotus ostreatus: characteristics, mechanisms, and toxicological response[J]. Journal of Hazardous Materials, 2022, 424: 127716.
    [56] de GROOT PWJ, SCHAAP PJ, van GRIENSVEN LJLD, VISSER J. Isolation of developmentally regulated genes from the edible mushroom Agaricus bisporus[J]. Microbiology, 1997, 143(6): 1993-2001.
    [57] MURAGUCHI H, KAMADA T. A mutation in the eln2 gene encoding a cytochrome P450 of Coprinus cinereus affects mushroom morphogenesis[J]. Fungal Genetics and Biology, 2000, 29(1): 49-59.
    [58] SHAH P, SWIATLO E. A multifaceted role for polyamines in bacterial pathogens[J]. Molecular Microbiology, 2008, 68(1): 4-16.
    [59] GHOSH UK, ISLAM MN, SIDDIQUI MN, CAO X, KHAN MR. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms[J]. Plant Biology, 2022, 24(2): 227-239.
    [60] PELKMANS JF, LUGONES LG, WÖSTEN HAB. 15 fruiting body formation in basidiomycetes[M]//Growth, Differentiation and Sexuality. Cham: Springer International Publishing, 2016: 387-405.
    [61] TAO YX, CHEN RL, YAN JJ, LONG Y, TONG ZJ, SONG HB, XIE BG. A hydrophobin gene, Hyd9, plays an important role in the formation of aerial hyphae and primordia in Flammulina filiformis[J]. Gene, 2019, 706: 84-90.
    [62] HAMLETT CAE, SHIRTCLIFFE NJ, NEWTON MI, McHALE G, KOCH K. Passive water control at the surface of a superhydrophobic lichen[J]. Planta, 2011, 234(6): 1267-1274.
    [63] YOO SI, LEE HY, MARKKANDAN K, MOON S, AHN YJ, JI SM, KO J, KIM SJ, RYU H, HONG CP. Comparative transcriptome analysis identified candidate genes involved in mycelium browning in Lentinula edodes[J]. BMC Genomics, 2019, 20(1): 1-13.
    [64] LIU XB, XIA EH, LI M, CUI YY, WANG PM, ZHANG JX, XIE BG, XU JP, YAN JJ, LI J, NAGY LG, YANG ZL. Transcriptome data reveal conserved patterns of fruiting body development and response to heat stress in the mushroom-forming fungus Flammulina filiformis[J]. PLoS One, 2020, 15(10): e0239890.
    [65] CESUR A, YAMAMOTO R, ASADA Y, WATANABE A. Relationship between fruiting body development and extracellular laccase production in the edible mushroom Flammulina velutipes[J]. Biochemistry and Biophysics Reports, 2022, 29: 101204.
    [66] 陈辉, 郝海波, 赵静, 王倩, 隽加香, 陈明杰, 冯志勇, 张津京. 漆酶同工酶基因在斑玉蕈生长发育过程中的表达分析[J]. 菌物学报, 2020, 39(6): 1038-1048. CHEN H, HAO HB, ZHAO J, WANG Q, JUAN JX, CHEN MJ, FENG ZY, ZHANG JJ. Expression analysis of laccase isozyme gene during Hypsizygus marmoreus growth and development[J]. Mycosystema, 2020, 39(6): 1038-1048(in Chinese).
    [67] FUKUDA K, HIRAGA M, ASAKUMA S, ARAI I, SEKIKAWA M, URASHIMA T. Purification and characterization of a novel exo-β-1,3-1,6-glucanase from the fruiting body of the edible mushroom enoki (Flammulina velutipes)[J]. Bioscience Biotechnology and Biochemistry, 2008, 72(12): 3107-3113.
    [68] PARK YJ, BAEK JH, LEE S, KIM C, RHEE H, KIM H, SEO JS, PARK HR, YOON DE, NAM JY, KIM HI, KIM JG, YOON H, KANG HW, CHO JY, SONG ES, SUNG GH, YOO YB, LEE CS, LEE BM, KONG WS. Whole genome and global gene expression analyses of the model mushroom Flammulina velutipes reveal a high capacity for lignocellulose degradation[J]. PLoS One, 2014, 9(4): e93560.
    [69] KAMADA T, HAMADA Y, TAKEMARU T. Autolysis in vitro of the stipe cell wall in Coprinus macrorhizus[J]. Microbiology, 1982, 128(5): 1041-1046.
    [70] WESSELS JGH. Fruiting in the higher fungi[M]//Advances in Microbial Physiology. Amsterdam: Elsevier, 1993: 147-202.
    [71] KONNO N, SAKAMOTO Y. An endo-β-1,6-glucanase involved in Lentinula edodes fruiting body autolysis[J]. Applied Microbiology and Biotechnology, 2011, 91(5): 1365-1373.
    [72] ZHOU YJ, KANG LQ, NIU X, WANG J, LIU ZH, YUAN S. Purification, characterization and physiological significance of a chitinase from the pilei of Coprinopsis cinerea fruiting bodies[J]. FEMS Microbiology Letters, 2016, 363(12): fnw120.
    [73] FANG HJ, ZHANG WM, NIU X, LIU ZH, LU CM, WEI H, YUAN S. Stipe wall extension of Flammulina velutipes could be induced by an expansin-like protein from Helix aspersa[J]. Fungal Biology, 2014, 118(1): 1-11.
    [74] HUANG QH, HAN X, MUKHTAR I, GAO LL, HUANG RM, FU LP, YAN JJ, TAO YX, CHEN BZ, XIE BG. Identification and expression patterns of fvexpl1, an expansin-like protein-encoding gene, suggest an auxiliary role in the stipe morphogenesis of Flammulina velutipes[J]. Journal of Microbiology and Biotechnology, 2018, 28(4): 622-629.
    [75] SAKAMOTO Y, ANDO A, TAMAI Y, MIURA K, YAJIMA T. Protein expressions during fruit body induction of Flammulina velutipes under reduced temperature[J]. Mycological Research, 2002, 106(2): 222-227.
    [76] SAKAMOTO Y. Protein expression during Flammulina velutipes fruiting body formation[J]. Mycoscience, 2010, 51(3): 163-169.
    [77] LOS DA, MURATA N. Membrane fluidity and its roles in the perception of environmental signals[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2004, 1666(1/2): 142-157.
    [78] FU YP, LIANG Y, DAI YT, YANG CT, DUAN MZ, ZHANG Z, HU SN, ZHANG ZW, LI Y. De novo sequencing and transcriptome analysis of Pleurotus eryngii subsp. tuoliensis (bailinggu) mycelia in response to cold stimulation[J]. Molecules, 2016, 21(5): 560.
    [79] ERNST R, EJSING CS, ANTONNY B. Homeoviscous adaptation and the regulation of membrane lipids[J]. Journal of Molecular Biology, 2016, 428(24): 4776-4791.
    [80] SEZGIN E, LEVENTAL I, MAYOR S, EGGELING C. The mystery of membrane organization: composition, regulation and roles of lipid rafts[J]. Nature Reviews Molecular Cell Biology, 2017, 18(6): 361-374.
    [81] 解凡, 宋燕娇, 程冰, 孟国良, 郝金斌, 叶丽云, 吴小平. 低温胁迫诱导肺形侧耳合成麦角甾醇的通路分析[J]. 菌物学报, 2019, 38(12): 2221-2231. XIE F, SONG YJ, CHENG B, MENG GL, HAO JB, YE LY, WU XP. Cold stress induction of ergosterol biosynthesis in Pleurotus pulmonarius[J]. Mycosystema, 2019, 38(12): 2221-2231(in Chinese).
    [82] WANG RH, MA PD, LI C, XIAO LG, LIANG ZS, DONG JE. Combining transcriptomics and metabolomics to reveal the underlying molecular mechanism of ergosterol biosynthesis during the fruiting process of Flammulina velutipes[J]. BMC Genomics, 2019, 20(1): 1-12.
    [83] PRIETO JA, ESTRUCH F, CÓRCOLES-SÁEZ I, del POETA M, RIEGER R, STENZEL I, RANDEZ-GIL F. Pho85 and PI(4,5)P2 regulate different lipid metabolic pathways in response to cold[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2020, 1865(2): 158557.
    [84] KNIGHT H, TREWAVAS AJ, KNIGHT MR. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation[J]. The Plant Cell, 1996, 8(3): 489-503.
    [85] WU TH, YE ZW, GUO LQ, YANG XQ, LIN JF. De novo transcriptome sequencing of Flammulina velutipes uncover candidate genes associated with cold-induced fruiting[J]. Journal of Basic Microbiology, 2018, 58(8): 698-703.
    [86] 华霜. 低温胁迫白灵菇原基形成过程中DNA甲基化变异及调控基因研究[D]. 长春: 吉林农业大学博士学位论文, 2017. HUA S. Study on DNA methylation variation and regulatory genes during the formation of Pleurotus nebrodensis primordium under low temperature stress[D]. Changchun: Doctoral Dissertation of Jilin Agricultural University, 2017(in Chinese).
    [87] LIU QB, DING YL, SHI YT, MA L, WANG Y, SONG CP, WILKINS KA, DAVIES JM, KNIGHT H, KNIGHT MR, GONG ZZ, GUO Y, YANG SH. The calcium transporter ANNEXIN1 mediates cold-induced calcium signaling and freezing tolerance in plants[J]. The EMBO Journal, 2021, 40(2): e104559.
    [88] YUAN PG, YANG TB, POOVAIAH BW. Calcium signaling-mediated plant response to cold stress[J]. International Journal of Molecular Sciences, 2018, 19(12): 3896.
    [89] 吴雪昌, 胡森杰, 钱凯先. 酵母HOG-MAPK途径[J]. 细胞生物学杂志, 2005(3): 247-252. WU XC, HU SJ, QIAN KX. HOG-MAPK pathway in yeast[J]. Chinese Journal of Coll Biology, 2005(3): 247-252(in Chinese).
    [90] 金华燕. 蛹虫草组氨酸激酶基因(CmHK)和Kexin基因(CmKexin)的研究[D]. 南昌: 江西师范大学硕士学位论文, 2013. JIN HY. The Study of Hlstidine Kinase Gene (CmHK) and Kexin Gene (CmKecxin) in Cordyceps militaris[D]. Nanchang: Master’s Thesis of Jiangxi Normal University, 2013(in Chinese).
    [91] SUZUKI I, LOS DA, MURATA N. Perception and transduction of low-temperature signals to induce desaturation of fatty acids[J]. Biochemical Society Transactions, 2000, 28(6): 628-630.
    [92] 李琼洁. 冷诱导金针菇原基形成的相关基因研究[D]. 广州: 华南农业大学硕士学位论文, 2016. LI QJ. Study on genes related to cold-induced primordium formation of Flammulina velutipes[D]. Guangzhou: Master’s Thesis of South China Agricultural University, 2016(in Chinese).
    [93] JIA HH, HAO LL, GUO XL, LIU SC, YAN Y, GUO XQ. A Raf-like MAPKKK gene, GhRaf19, negatively regulates tolerance to drought and salt and positively regulates resistance to cold stress by modulating reactive oxygen species in cotton[J]. Plant Science, 2016, 252: 267-281.
    [94] 解凡, 赵丽丽, 叶丽云, 吴小平. 肺形侧耳低温胁迫时期的转录组分析[J]. 菌物学报, 2018, 37(12): 1598-1607. XIE F, ZHAO LL, YE LY, WU XP. Transcriptome analyses of Pleurotus pulmonorius after cold stress challenge[J]. Mycosystema, 2018, 37(12): 1598-1607(in Chinese).
    [95] MATTEI AL, BAILLY N, MEISSNER A. DNA methylation: a historical perspective[J]. Trends in Genetics, 2022, 38(7): 676-707.
    [96] SOTO T, BELTRÁN FF, PAREDES V, MADRID M, MILLAR JBA, VICENTE-SOLER J, CANSADO J, GACTO M. Cold induces stress-activated protein kinase-mediated response in the fission yeast Schizosaccharomyces pombe[J]. European Journal of Biochemistry, 2002, 269(20): 5056-5065.
    [97] ITO E, UEMURA T. RAB GTPases and SNAREs at the trans-Golgi network in plants[J]. Journal of Plant Research, 2022, 135(3): 389-403.
    [98] YAN JJ, XIE B, ZHANG L, LI SJ, van PEER AF, WU TJ, CHEN BZ, XIE BG. Small GTPases and stress responses of vvran1 in the straw mushroom Volvariella volvacea[J]. International Journal of Molecular Sciences, 2016, 17(9): 1527.
    [99] YAMADA M, SAKURABA S, SHIBATA K, TAGUCHI G, INATOMI S, OKAZAKI M, SHIMOSAKA M. Isolation and analysis of genes specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes by fluorescence differential display[J]. FEMS Microbiology Letters, 2006, 254(1): 165-172.
    [100] MENG L, CHOU TS, JIANG SY, WANG L, ZHU MJ, MUKHTAR I, XIE BG, WANG W. Characterization and expression pattern analysis of pheromone receptor-like genes in winter mushroom Flammulina filiformis[J]. Archives of Microbiology, 2020, 202(10): 2671-2678.
    [101] WU TJ, HU CC, XIE BG, ZHANG L, YAN SJ, WANG W, TAO YX, LI SJ. A single transcription factor (PDD1) determines development and yield of winter mushroom (Flammulina velutipes)[J]. Applied and Environmental Microbiology, 2019, 85(24): e01735-19.
    [102] 刘芳, 王威, 谢宝贵. 金针菇菌丝与原基差异表达基因分析[J]. 食用菌学报, 2014, 21(1): 1-7. LIU F, WANG W, XIE BG. Comparison of gene expression patterns in the Mycelium and primordia of Flammulina velutipes, strain 1123[J]. Acta Edulis Fungi, 2014, 21(1): 1-7(in Chinese).
    [103] REIS FS, BARROS L, MARTINS A, FERREIRA ICFR. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: an inter-species comparative study[J]. Food and Chemical Toxicology, 2012, 50(2): 191-197.
    [104] GONG M, WANG Y, SU EZ, ZHANG JG, TANG LH, LI ZP, ZHANG LL, ZOU G, WAN JN, BAO DP. The promising application of a β-glucosidase inhibitor in the postharvest management of Volvariella volvacea[J]. Postharvest Biology and Technology, 2022, 185: 111784.
    [105] 张国良. 低温处理对阿魏菇菌丝体生理生化及营养积累的影响[D]. 乌鲁木齐: 新疆农业大学硕士学位论文, 2013. ZHANG GL. Effects of low temperature treatment on physiology, biochemistry and nutrient accumulation of Pleurotus ferulae mycelium[D]. Urumqi: Master’s Thesis of Xinjiang Agricultural University, 2013(in Chinese).
    [106] 闫静, 王伟科, 袁卫东, 陆娜, 宋吉玲, 周祖法. 温度对秀珍菇生长发育及胞外酶活性的影响[J]. 浙江大学学报(农业与生命科学版), 2020, 46(2): 161-167. YAN J, WANG WK, YUAN WD, LU N, SONG JL, ZHOU ZF. Effects of temperature on the growth, development and extracellular enzyme activities of Pleurotus pulmonarius[J]. Journal of Zhejiang University (Agriculture & Life Sciences Edition), 2020, 46(2): 161-167(in Chinese).
    [107] LIU YY, MA XB, LONG Y, YAO S, WEI CZ, HAN X, GAN BC, YAN JJ, XIE BG. Effects of β-1,6-glucan synthase gene (FfGS6) overexpression on stress response and fruit body development in Flammulina filiformis[J]. Genes, 2022, 13(10): 1753.
    [108] YAMADA M, SAKURABA S, SHIBATA K, INATOMI S, OKAZAKI M, SHIMOSAKA M. Cloning and characterization of a gene coding for a hydrophobin, Fv-hyd1, specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes[J]. Applied Microbiology and Biotechnology, 2005, 67(2): 240-246.
    [109] OHM RA, de JONG JF, LUGONES LG, AERTS A, KOTHE E, STAJICH JE, de VRIES RP, RECORD E, LEVASSEUR A, BAKER SE, BARTHOLOMEW KA, COUTINHO PM, ERDMANN S, FOWLER TJ, GATHMAN AC, LOMBARD V, HENRISSAT B, KNABE N, KÜES U, LILLY WW, et al. Genome sequence of the model mushroom Schizophyllum commune[J]. Nature Biotechnology, 2010, 28(9): 957-963.
    [110] HOLTHUIS JCM, MENON AK. Lipid landscapes and pipelines in membrane homeostasis[J]. Nature, 2014, 510(7503): 48-57.
    [111] GIANFREDA L, XU F, BOLLAG JM. Laccases: a useful group of oxidoreductive enzymes[J]. Bioremediation Journal, 1999, 3(1): 1-26.
    [112] 徐桂红, 赵心清, 李宁, 白凤武. 锌离子提高絮凝酵母乙酸胁迫耐受性[J]. 化工学报, 2012, 63(6): 1823-1829. XU GH, ZHAO XQ, LI N, BAI FW. Improvement of acetic acid tolerance of self-flocculating yeast by zinc supplementation[J]. CIESC Journa, 2012, 63(6): 1823-1829(in Chinese).
    [113] 吴又多. 锌离子对丙酮丁醇梭菌发酵的调控作用及机制[D]. 大连: 大连理工大学博士学位论文, 2017. WU YD. Regulation and mechanism of zinc ion on Clostridium acetobutylicum fermentation[D]. Dalian: Doctoral Dissertation of Dalian University of Technology, 2017(in Chinese).
    [114] ZHAO XQ, BAI FW. Zinc and yeast stress tolerance: micronutrient plays a big role[J]. Journal of Biotechnology, 2012, 158(4): 176-183.
    [115] ISHIZAKI T, SHISHIDO K. Decreased zinc ion accumulation by the basidiomycete Lentinus edodes over-expressing L. edodes priA gene[J]. FEMS Microbiology Letters, 2000, 193(1): 111-115.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄天宇,郑婷婷,龚明,郭婷,李福后,王伟霞,李正鹏,唐利华. 低温刺激对食用菌子实体形成的研究进展[J]. 微生物学通报, 2023, 50(12): 5518-5533

复制
分享
文章指标
  • 点击次数:247
  • 下载次数: 872
  • HTML阅读次数: 629
  • 引用次数: 0
历史
  • 收稿日期:2023-04-13
  • 录用日期:2023-09-13
  • 在线发布日期: 2023-12-06
  • 出版日期: 2023-12-20
文章二维码