科微学术

微生物学通报

呼和浩特市周边地下水CPR和DPANN类群的检测及多样性分析
作者:
基金项目:

内蒙古自治区自然科学基金(2020BS03006);内蒙古师范大学基本科研业务费项目(2022JBQN091,2022JBTD010);内蒙古自治区科技计划(2020GG0039)


Diversity of CPR and DPANN in groundwater around Hohhot City
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】候选门级辐射类群(candidate phyla radiation, CPR)和DPANN是与绝大多数已知细菌和古菌具有显著差异的独特类群,因发现较晚,人们对其认识还非常有限。已知二者类群庞大、存在广泛,但在不同生境中的多样性研究还较少,生态功能尚属未知。【目的】分析不同地下水中CPR和DPANN的多样性,探讨不同方法对CPR和DPANN检出及富集的影响。【方法】采用0.1 μm滤膜收集菌体和宏基因组测序的方法分析呼和浩特市周边4个不同地下水中CPR和DPANN的多样性。比较宏基因组测序与16S rRNA基因扩增子测序对CPR和DPANN检出的影响,以及不同过滤方式和不同滤膜组合对CPR和DPANN富集的作用。【结果】4个地下水样品CPR类群检出33−64个菌门,相对丰度在0.17%−1.67%之间;DPANN检出1−7个菌门,相对丰度在0.000 93%−0.071 00%之间。对于CPR和DPANN,16S rRNA基因V3−V4区扩增子测序仅检出了纳古菌门(Nanoarchaeota)。1.2 μm与0.1 μm滤膜组合具有最好的CPR和DPANN富集效果,在及时更换滤膜的过滤方式下相对丰度分别提高到13.33%和0.58%。【结论】地下水中存在种类丰富但相对丰度较低的CPR和DPANN物种资源,且不同地下水中的CPR和DPANN存在一定的差异。16S rRNA基因V3−V4区扩增子测序会遗漏地下水中CPR和DPANN物种信息。在及时更换滤膜的过滤方式下采用不同孔径滤膜组合过滤会显著提高CPR和DPANN的相对丰度,达到富集效果。本研究为后续CPR和DPANN物种资源、基因资源和天然产物资源的挖掘,以及该类菌株的可培养工作奠定了基础。

    Abstract:

    [Background] Candidate phyla radiation (CPR) and DPANN are unique groups that are significantly different from most known bacteria and archaea, and the knowledge about them is limited due to the late discovery. The two groups are known to be large and widespread, while their diversity and ecological roles in different habitats remain to be studied. [Objective] To analyze the diversity of CPR and DPANN in different groundwater samples and the influences of different methods on the detection and enrichment of CPR and DPANN. [Methods] Metagenomic sequencing was employed to determine the diversity of CPR and DPANN in four different groundwater samples around Hohhot after filtration through a 0.1 μm membrane. Metagenomic sequencing was compared with 16S rRNA gene amplicon sequencing regarding the detection of CPR and DPANN, and the effects of different filtration methods and membrane combinations on the enrichment of CPR and DPANN were compared. [Results] From the 4 groundwater samples, 33-64 phyla of CPR with the relative abundance of 0.17%-1.67% and 1-7 phyla of DPANN with the relative abundance of 0.000 93%-0.071% were detected. For CPR and DPANN, only Nanoarchaeota was detected by 16S rRNA gene V3-V4 amplicon sequencing. The combination of 1.2μm and 0.1 μm filters showed the best enrichment effect on CPR and DPANN, and the relative abundance increased to 13.33% and 0.58%, respectively, by timely replacement of filters. [Conclusion] There were abundant resources of CPR and DPANN with low relative abundance in groundwater, and the distribution of CPR and DPANN varied in different groundwater samples. The 16S rRNA gene V3-V4 amplicon sequencing missed the information of CPR and DPANN in groundwater. The enrichment effect on CPR and DPANN can be significantly improved by the combination of filters with different pore sizes and the timely replacement of filters. The findings underpin the further exploration of species, gene, and natural product resources and the strain culture of CPR and DPANN.

    参考文献
    [1] CASTELLE CJ, BROWN CT, ANANTHARAMAN K, PROBST AJ, HUANG RH, BANFIELD JF. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations[J]. Nature Reviews Microbiology, 2018, 16(10): 629-645.
    [2] RINKE C, SCHWIENTEK P, SCZYRBA A, IVANOVA NN, ANDERSON IJ, CHENG JF, DARLING A, MALFATTI S, SWAN BK, GIES EA, DODSWORTH JA, HEDLUND BP, TSIAMIS G, SIEVERT SM, LIU WT, EISEN JA, HALLAM SJ, KYRPIDES NC, STEPANAUSKAS R, RUBIN EM, et al. Insights into the phylogeny and coding potential of microbial dark matter[J]. Nature, 2013, 499(7459): 431-437.
    [3] BROWN CT, HUG LA, THOMAS BC, SHARON I, CASTELLE CJ, SINGH A, WILKINS MJ, WRIGHTON KC, WILLIAMS KH, BANFIELD JF. Unusual biology across a group comprising more than 15% of domain Bacteria[J]. Nature, 2015, 523(7559): 208-211.
    [4] HE C, KEREN R, WHITTAKER ML, FARAG IF, DOUDNA JA, CATE JHD, BANFIELD JF. Genome-resolved metagenomics reveals site-specific diversity of episymbiotic CPR bacteria and DPANN archaea in groundwater ecosystems[J]. Nature Microbiology, 2021, 6(3): 354-365.
    [5] NICOLAS AM, JAFFE AL, NUCCIO EE, TAGA ME, FIRESTONE MK, BANFIELD JF. Soil candidate phyla radiation bacteria encode components of aerobic metabolism and co-occur with nanoarchaea in the rare biosphere of rhizosphere grassland communities[J]. mSystems, 2021, 6(4): e0120520.
    [6] CAI RN, ZHANG J, LIU R, SUN CM. Metagenomic insights into the metabolic and ecological functions of abundant deep-sea hydrothermal vent DPANN archaea[J]. Applied and Environmental Microbiology, 2021, 87(9): e03009-e03020.
    [7] DOMBROWSKI N, LEE JH, WILLIAMS TA, OFFRE P, SPANG A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea[J]. FEMS Microbiology Letters, 2019, 366(2): fnz008.
    [8] HE XS, MCLEAN JS, EDLUND A, YOOSEPH S, HALL AP, LIU SY, DORRESTEIN PC, ESQUENAZI E, HUNTER RC, CHENG GH, NELSON KE, LUX R, SHI WY. Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(1): 244-249.
    [9] 陶晔, 邢鹏. 候选门级辐射类群(CPR)细菌研究进展[J]. 微生物学报, 2020, 60(6): 1284-1303. TAO Y, XING P. Progress in candidate phyla radiation (CPR) research[J]. Acta Microbiologica Sinica, 2020, 60(6): 1284-1303(in Chinese).
    [10]CASTELLE CJ, MÉHEUST R, JAFFE AL, SEITZ K, GONG XZ, BAKER BJ, BANFIELD JF. Protein family content uncovers lineage relationships and bacterial pathway maintenance mechanisms in DPANN archaea[J]. Frontiers in Microbiology, 2021, 12: 660052.
    [11]蒋建东, 纪彦晗, 王保战. 候选门级辐射类群(candidate phyla radiation)细菌的生理生态与进化[J]. 微生物学杂志, 2021, 41(6): 1-10. JIANG JD, JI YH, WANG BZ. The physiology, ecology and evolution of candidate phyla radiation bacteria[J]. Journal of Microbiology, 2021, 41(6): 1-10(in Chinese).
    [12] 姜凯, 曹春玲. 微生物暗物质分离培养——以CPR和DPANN类群为例[J]. 微生物学杂志, 2023, 43(2): 96-105. JIANG K, CAO CL. Isolation and cultivation of microbial dark matter—take CPR and DPANN group as examples[J]. Journal of Microbiology, 2023, 43(2): 96-105(in Chinese).
    [13] BAKER BJ, HUGENHOLTZ P, DAWSON SC, BANFIELD JF. Extremely acidophilic protists from acid mine drainage host Rickettsiales-lineage endosymbionts that have intervening sequences in their 16S rRNA genes[J]. Applied and Environmental Microbiology, 2003, 69(9): 5512-5518.
    [14] BAKER BJ, TYSON GW, WEBB RI, FLANAGAN J, HUGENHOLTZ P, ALLEN EE, BANFIELD JF. Lineages of acidophilic archaea revealed by community genomic analysis[J]. Science, 2006, 314(5807): 1933-1935.
    [15] TANAKA N, MEINEKE B, SHUMAN S. RtcB, a novel RNA ligase, can catalyze tRNA splicing and HAC1 mRNA splicing in vivo[J]. Journal of Biological Chemistry, 2011, 286(35): 30253-30257.
    [16] SALMAN V, AMANN R, SHUB DA, SCHULZ-VOGT HN. Multiple self-splicing introns in the 16S rRNA genes of giant sulfur bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(11): 4203-4208.
    [17] CASTELLE CJ, WRIGHTON KC, THOMAS BC, HUG LA, BROWN CT, WILKINS MJ, FRISCHKORN KR, TRINGE SG, SINGH A, MARKILLIE LM, TAYLOR RC, WILLIAMS KH, BANFIELD JF. Genomic expansion of domain Archaea highlights roles for organisms from new phyla in anaerobic carbon cycling[J]. Current Biology, 2015, 25(6): 690-701.
    [18] LUEF B, FRISCHKORN KR, WRIGHTON KC, HOLMAN HY N, BIRARDA G, THOMAS BC, SINGH A, WILLIAMS KH, SIEGERIST CE, TRINGE SG, DOWNING KH, COMOLLI LR, BANFIELD JF. Diverse uncultivated ultra-small bacterial cells in groundwater[J]. Nature Communications, 2015, 6: 6372.
    [19] BAKER BJ, COMOLLI LR, DICK GJ, HAUSER LJ, HYATT D, DILL BD, LAND ML, VERBERKMOES NC, HETTICH RL, BANFIELD JF. Enigmatic, ultrasmall, uncultivated archaea[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19): 8806-8811.
    [20] TRINGE SG, RUBIN EM. Metagenomics: DNA sequencing of environmental samples[J]. Nature Reviews Genetics, 2005, 6(11): 805-814.
    [21] KARLSSON FH, TREMAROLI V, NOOKAEW I, BERGSTRÖM G, BEHRE CJ, FAGERBERG B, NIELSEN J, BÄCKHED F. Gut metagenome in European women with normal, impaired and diabetic glucose control[J]. Nature, 2013, 498(7452): 99-103.
    [22] NIELSEN HB, ALMEIDA M, JUNCKER AS, RASMUSSEN S, LI JH, SUNAGAWA S, PLICHTA DR, GAUTIER L, PEDERSEN AG, LE CHATELIER E, PELLETIER E, BONDE I, NIELSEN T, MANICHANH C, ARUMUGAM M, BATTO JM, QUINTANILHA dos SANTOS MB, BLOM N, BORRUEL N, BURGDORF KS, et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes[J]. Nature Biotechnology, 2014, 32(8): 822-828.
    [23] LI DH, LIU CM, LUO RB, SADAKANE K, LAM TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph[J]. Bioinformatics, 2015, 31(10): 1674-1676.
    [24] QIN JJ, LI RQ, RAES J, ARUMUGAM M, BURGDORF KS, MANICHANH C, NIELSEN T, PONS N, LEVENEZ F, YAMADA T, MENDE DR, LI JH, XU JM, LI SC, LI DF, CAO JJ, WANG B, LIANG HQ, ZHENG HS, XIE YL, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285): 59-65.
    [25] MENDE DR, WALLER AS, SUNAGAWA S, JÄRVELIN AI, CHAN MM, ARUMUGAM M, RAES J, BORK P. Assessment of metagenomic assembly using simulated next generation sequencing data[J]. PLoS One, 2012, 7(2): e31386.
    [26] FU LM, NIU BF, ZHU ZW, WU ST, LI WZ. CD-HIT: accelerated for clustering the next-generation sequencing data[J]. Bioinformatics, 2012, 28(23): 3150-3152.
    [27] SUNAGAWA S, COELHO LP, CHAFFRON S, KULTIMA JR, LABADIE K, SALAZAR G, DJAHANSCHIRI B, ZELLER G, MENDE DR, ALBERTI A, CORNEJO-CASTILLO FM, COSTEA PI, CRUAUD C, D’OVIDIO F, ENGELEN S, FERRERA I, GASOL JM, GUIDI L, HILDEBRAND F, KOKOSZKA F, et al. Structure and function of the global ocean microbiome[J]. Science, 2015, 348(6237): 1261359.
    [28] BUCHFINK B, XIE C, HUSON DH. Fast and sensitive protein alignment using DIAMOND[J]. Nature Methods, 2015, 12(1): 59-60.
    [29] HUSON DH, MITRA S, RUSCHEWEYH HJ, WEBER N, SCHUSTER SC. Integrative analysis of environmental sequences using MEGAN4[J]. Genome Research, 2011, 21(9): 1552-1560.
    [30] BERG J, BRANDT KK, AL-SOUD WA, HOLM PE, HANSEN LH, SØRENSEN SJ, NYBROE O. Selection for Cu-tolerant bacterial communities with altered composition, but unaltered richness, via long-term Cu exposure[J]. Applied and Environmental Microbiology, 2012, 78(20): 7438-7446.
    [31] MAGOČ T, SALZBERG SL. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963.
    [32] BOKULICH NA, SUBRAMANIAN S, FAITH JJ, GEVERS D, GORDON JI, KNIGHT R, MILLS DA, CAPORASO JG. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J]. Nature Methods, 2013, 10(1): 57-59.
    [33] EDGAR RC, HAAS BJ, CLEMENTE JC, QUINCE C, KNIGHT R. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16): 2194-2200.
    [34] WANG YY, GUO H, GAO XG, WANG JH. The intratumor fferent polysaccharides[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(33): 20223-20234.
    [50] SAKAI HD, NUR N, KATO S, YUKI M, SHIMIZU M, ITOH T, OHKUMA M, SUWANTO A, KUROSAWA N. Insight into the symbiotic lifestyle of DPANN archaea revealed by cultivation and genome analyses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(3): e2115449119.ion Saccharibacteria (TM7) bacteria in coculture with bacterial hosts[J]. Journal of Oral Microbiology, 2020, 12(1): 1814666.
    [37] WURCH L, GIANNONE RJ, BELISLE BS, SWIFT C, UTTURKAR S, HETTICH RL, REYSENBACH AL, PODAR M. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment[J]. Nature Communications, 2016, 7: 12115.
    [38] HAMM JN, ERDMANN S, ELOE-FADROSH EA, ANGELONI A, ZHONG L, BROWNLEE C, WILLIAMS TJ, BARTON K, CARSWELL S, SMITH MA, BRAZENDALE S, HANCOCK AM, ALLEN MA, RAFTERY MJ, CAVICCHIOLI R. Unexpected host dependency of Antarctic Nanohaloarchaeota[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(29): 14661-14670.
    [39] PROBST AJ, LADD B, JARETT JK, GELLER- MCGRATH DE, SIEBER CMK, EMERSON JB, ANANTHARAMAN K, THOMAS BC, MALMSTROM RR, STIEGLMEIER M, KLINGL A, WOYKE T, RYAN MC, BANFIELD JF. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface[J]. Nature Microbiology, 2018, 3(3): 328-336.
    [40] CALLAHAN BJ, WONG J, HEINER C, OH S, THERIOT CM, GULATI AS, McGILL SK, DOUGHERTY MK. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution[J]. Nucleic Acids Research, 2019, 47(18): e103.
    [41] AMIR A, McDONALD D, NAVAS-MOLINA JA, KOPYLOVA E, MORTON JT, XU ZZ, KIGHTLEY EP, THOMPSON LR, HYDE ER, GONZALEZ A, KNIGHT R. Deblur rapidly resolves single-nucleotide community sequence patterns[J]. mSystems, 2017, 2(2): e00191-e00116.
    [42] CROSS KL, CAMPBELL JH, BALACHANDRAN M, CAMPBELL AG, COOPER CJ, GRIFFEN A, HEATON M, JOSHI S, KLINGEMAN D, LEYS E, YANG Z, PARKS JM, PODAR M. Targeted isolation and cultivation of uncultivated bacteria by reverse genomics[J]. Nature Biotechnology, 2019, 37(11): 1314-1321.
    [43] BOR B, COLLINS AJ, MURUGKAR PP, BALASUBRAMANIAN S, TO TT, HENDRICKSON EL, BEDREE JK, BIDLACK FB, JOHNSTON CD, SHI W, McLEAN JS, HE X, DEWHIRST FE. Insights obtained by culturing Saccharibacteria with their bacterial hosts[J]. Journal of Dental Research, 2020, 99(6): 685-694.
    [44] NIE J, UTTER DR, KERNS KA, LAMONT EI, HENDRICKSON EL, LIU J, WU TX, HE XS, McLEAN J, BOR B. Strain-level variation and diverse host bacterial responses in episymbiotic Saccharibacteria[J]. mSystems, 2022, 7(2): e0148821.
    [45] YAKIMOV MM, MERKEL AY, GAISIN VA, PILHOFER M, MESSINA E, HALLSWORTH JE, KLYUKINA AA, TIKHONOVA EN, GORLENKO VM. Cultivation of a vampire: ‘Candidatus Absconditicoccus praedator’[J]. Environmental Microbiology, 2022, 24(1): 30-49.
    [46] KURODA K, YAMAMOTO K, NAKAI R, HIRAKATA Y, KUBOTA K, NOBU MK, NARIHIRO T. Symbiosis between Candidatus Patescibacteria and archaea discovered in wastewater-treating bioreactors[J]. mBio, 2022, 13(5): e0171122.
    [47] KURODA K, KUBOTA K, KAGEMASA S, NAKAI R, HIRAKATA Y, YAMAMOTO K, NOBU MK, NARIHIRO T. Novel cross-domain symbiosis between Candidatus Patescibacteria and hydrogenotrophic methanogenic archaea Methanospirillum discovered in a methanogenic ecosystem[J]. Microbes and Environments, 2022, 37(4): ME22063.
    [48] HUBER H, HOHN MJ, RACHEL R, FUCHS T, WIMMER VC, STETTER KO. A new phylum of archaea represented by a nanosized hyperthermophilic symbiont[J]. Nature, 2002, 417(6884): 63-67.
    [49] la CONO V, MESSINA E, ROHDE M, ARCADI E, CIORDIA S, CRISAFI F, DENARO R, FERRER M, GIULIANO L, GOLYSHIN PN, GOLYSHINA OV, HALLSWORTH JE, LA SPADA G, MENA MC, MERKEL AY, SHEVCHENKO MA, SMEDILE F, SOROKIN DY, TOSHCHAKOV SV, YAKIMOV MM. Symbiosis between nanohaloarchaeon and haloarchaeon is based on utilization of di
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姜凯,曹春玲,红雨,宋枚汐,杨鸿臻,陈乌日娜,刘昱昕. 呼和浩特市周边地下水CPR和DPANN类群的检测及多样性分析[J]. 微生物学通报, 2023, 50(12): 5320-5336

复制
分享
文章指标
  • 点击次数:193
  • 下载次数: 754
  • HTML阅读次数: 507
  • 引用次数: 0
历史
  • 收稿日期:2023-05-15
  • 录用日期:2023-06-26
  • 在线发布日期: 2023-12-06
  • 出版日期: 2023-12-20
文章二维码