科微学术

微生物学通报

贵州典型煤矸石堆场微生物群落结构及功能特征
作者:
基金项目:

贵州省科技计划项目(黔科中引地[2022]4022);国家自然科学基金地区科学基金项目(42267064)


Structural and functional characteristics of microbial communities of typical coal gangue dumps in Guizhou Province
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [55]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】煤矸石堆场用于堆放煤矿开采过程中产生的一种热值低、含重金属的固体废弃物,会产生大量的酸性废水,对堆场周边的生态环境造成严重影响。【目的】探究煤矸石堆场的微生物群落结构和功能特征。【方法】选择贵州省六枝特区典型煤矸石堆场作为研究对象,采集堆场表层土壤、矸石层土壤、废水浸出口沉积物和堆场下游河道沉积物,通过宏基因组学技术进行分析。【结果】细菌的优势菌门为变形菌门(Proteobacteria)和放线菌门(Actinobacteria),优势菌属为钩端螺菌属(Leptospirillum)和硫化杆菌属(Sulfobacillus);古菌的优势菌门为Candidatus_Thermoplasmatota和泉古菌门(Crenarchaeota),优势菌属为热原体属(Thermoplasma)和金属球菌属(Metallosphaera)。不同采样点细菌和古菌的优势菌属存在显著差异,矸石层土壤和废水浸出口沉积物中的铁氧化细菌和硫氧化细菌比其他2个样点丰富。煤矸石堆场中微生物的碳、氮、硫代谢基因丰度较高,共检测到6条固碳途径、6条氮代谢途径和3条硫代谢途径。主要的固碳基因为ACATE2.2.1.1,固碳途径以还原性三羧酸循环为主;主要的氮代谢基因为nirBnasAnarG,氮代谢途径以反硝化为主;主要的硫代谢基因为cysHsir,硫代谢途径以同化硫酸盐还原为主。【结论】本研究可进一步拓展对矿山生态环境的认识,为矿区生态修复、土壤和河流污染的治理提供理论依据。

    Abstract:

    [Background] Coal gangue dumps stockpile coal wastes with low calorific values and heavy metals, which are generated during coal mining, along with a large amount of acidic wastewater and deteriorated eco-environment nearby. [Objective] This paper aims to explore the structure and functional characteristics of microbial communities in coal gangue dumps. [Methods] The soil samples of the dump surface and gangue layers, as well as the sediment samples from wastewater leaching outlets and dump downstream river, of a typical gangue dump in Liuzhi special district, Guizhou Province were collected. Metagenomics was employed to reveal the microbial community structures and functional characteristics of the samples. [Results] The results showed that bacteria were more diverse and abundant than archaea. The dominant bacterial phyla were Proteobacteria and Actinobacteria, and the dominant genera were Leptospirillum and Sulfobacillus. The dominant archaeal phyla were Candidatus_ Thermoplasmatota and Crenarchaeota, and the dominant genera were Thermoplasma and Metallosphaera. The dominant genera of bacteria and archaea in different sampling sites varied from each other, and Fe-oxidizing bacteria (FOB) and sulfur-oxidizing bacteria (SOB) were more abundant in the gangue layer soil and wastewater leaching outlet sediment than in the other two sampling sites. The genes for carbon, nitrogen, and sulfur metabolism were abundant in coal gangue, with six carbon fixation pathways, six nitrogen metabolism pathways, and three sulfur metabolism pathways detected. The dominant genes for carbon fixation were ACAT and E2.2.1.1, and the dominant pathway was reductive tricarboxylate cycle. For nitrogen metabolism, the dominant genes were nirB, nasA and narG, and the dominant pathway was denitrification. For sulphur metabolism, the dominant genes were cysH and sir, and the dominant pathway was assimilated sulphate reduction. [Conclusion] The findings are expected to enhance the understanding of mine ecology and provide a theoretical basis for the ecological restoration and pollution treatment in mining areas.

    参考文献
    [1] ZHANG M, WANG JM, LI SJ. Tempo-spatial changes and main anthropogenic influence factors of vegetation fractional coverage in a large-scale opencast coal mine area from 1992 to 2015[J]. Journal of Cleaner Production, 2019, 232: 940-952.
    [2] WU BH, LUO HY, WANG XT, LIU HK, PENG H, SHENG MP, XU F, XU H. Effects of environmental factors on soil bacterial community structure and diversity in different contaminated districts of Southwest China mine tailings[J]. Science of the Total Environment, 2022, 802: 149899.
    [3] KANE JL, MORRISSEY EM, SKOUSEN JG, FREEDMAN ZB. Soil microbial succession following surface mining is governed primarily by deterministic factors[J]. FEMS Microbiology Ecology, 2020, 96(11): 114.
    [4] 张金池, 李翀, 贾赵辉, 刘鑫, 孟苗婧. 功能性微生物在废弃矿山生态修复中的应用[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 146-156. ZHANG JC, LI C, JIA ZH, LIU X, MENG MJ. Application of functional microorganisms in ecological restoration of abandoned mines[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(6): 146-156(in Chinese).
    [5] 马蕊. 矿山环境保护存在的问题及治理措施[J]. 能源与节能, 2022(9): 159-161. MA R. Problems existing in mine environmental protection and treatment measures[J]. Energy and Conservation, 2022(9): 159-161(in Chinese).
    [6] SUH JW, KIM SM, YI H, CHOI Y. An overview of GIS-based modeling and assessment of mining-induced hazards: soil, water, and forest[J]. International Journal of Environmental Research and Public Health, 2017, 14(12): 1463.
    [7] SONG ZX, SONG GF, TANG WZ, YAN DD, ZHAO Y, ZHU YY, WANG JH, MA YL. Molybdenum contamination dispersion from mining site to a reservoir[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111631.
    [8] 李振, 雪佳, 朱张磊, 熊善新, 李学振, 周安宁, 刘莉君, 于伟, 屈进州. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2021(6): 165-178. LI Z, XUE J, ZHU ZL, XIONG SX, LI XZ, ZHOU AN, LIU LJ, YU W, QU JZ. Research progress on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources, 2021(6): 165-178(in Chinese).
    [9] 常纪文, 杜根杰, 杜建磊, 石晓莉. 我国煤矸石综合利用的现状、问题与建议[J]. 中国环保产业, 2022(8): 13-17. CHANG JW, DU GJ, DU JL, SHI XL. Current situation of the comprehensive utilization of coal gangue in China and the related problems and recommendations[J]. China Environmental Protection Industry, 2022(8): 13-17(in Chinese).
    [10] 赵鑫娜, 杨忠芳, 余涛. 矿区土壤重金属污染及修复技术研究进展[J]. 中国地质, 2023, 50(1): 84-101. ZHAO XN, YANG ZF, YU T. Review on heavy metal pollution and remediation technology in the soil of mining areas[J]. Geology in China, 2023, 50(1): 84-101(in Chinese).
    [11] 魏洪斌, 罗明, 向垒, 查理思, 杨慧丽. 矿业废弃地重金属形态分布特征与迁移转化影响机制分析[J]. 环境科学, 2023, 44(6): 3573-3584. WEI HB, LUO M, XIANG L, ZHA LS, YANG HL. Analysis on the distribution characteristics and influence mechanism of migration and transformation of heavy metals in mining wasteland[J]. Environmental Sciences, 2023, 44(6): 3573-3584(in Chinese).
    [12] 尚誉, 桑楠. 煤矸石堆积区周边土壤重金属污染特征与植物毒性[J]. 环境科学, 2022, 43(7): 3773-3780. SHANG Y, SANG N. Pollution characteristics and phytotoxicity of heavy metals in the soil around coal gangue accumulation area[J]. Environmental Science, 2022, 43(7): 3773-3780(in Chinese).
    [13] 王春光, 刘军省, 耿浩, 贾晗, 殷显阳, 迟昊轩. 铜陵矿区主要河流水质分析与污染评价[J]. 地学前缘, 2021, 28(4): 175-183. WANG CG, LIU JX, GENG H, JIA H, YIN XY, CHI HX. Water quality analysis and pollution evaluation of the main rivers in the Tongling mining area[J]. Earth Science Frontiers, 2021, 28(4): 175-183(in Chinese).
    [14] 郭朝晖, 涂卫佳, 彭驰, 黄博, 肖细元, 薛清华. 典型铅锌矿区河流沿岸农田土壤重金属分布特征及潜在生态风险评价[J]. 农业环境科学学报, 2017, 36(10): 2029-2038. GUO ZH, TU WJ, PENG C, HUANG B, XIAO XY, XUE QH. Distribution characteristics and potential ecological risk assessment of heavy metals in paddy soil along both sides of river from typical lead/zinc mine area[J]. Journal of Agro-Environment Science, 2017, 36(10): 2029-2038(in Chinese).
    [15] 袁鑫奇, 俞乃琪, 郭兆来, 汪斯琛, 唐春东, 杨化菊, 刘嫦娥, 段昌群. 会泽铅锌矿区废弃地优势草本植物的重金属富集特征[J]. 生态与农村环境学报, 2022, 38(3): 399-408. YUAN XQ, YU NQ, GUO ZL, WANG SC, TANG CD, YANG HJ, LIU CE, DUAN CQ. The accumulation characteristics of heavy metals in dominant herbaceous plants in the abandoned Pb-Zn Mining area of Huize[J]. Journal of Ecology and Rural Environment, 2022, 38(3): 399-408(in Chinese).
    [16] 张龙, 张云霞, 宋波, 吴勇, 周子阳. 云南兰坪铅锌矿区优势植物重金属富集特性及应用潜力[J]. 环境科学, 2020, 41(9): 4210-4217. ZHANG L, ZHANG YX, SONG B, WU Y, ZHOU ZY. Potential of accumulation and application of dominant plants in Lanping lead-zinc mine, Yunnan Province[J]. Environmental Science, 2020, 41(9): 4210-4217(in Chinese).
    [17] XIANG YW, DONG YQ, ZHAO SY, YE F, WANG Y, ZHOU M, HOU HB. Microbial distribution and diversity of soil around a manganese mine area[J]. Water, Air, & Soil Pollution, 2020, 231(10): 506.
    [18] LIANG ZT, ZHANG WJ, YANG YS, MA JC, LI SX, WEN Z. Soil characteristics and microbial community response in rare earth mining areas in southern Jiangxi Province, China[J]. Environmental Science and Pollution Research, 2021, 28(40): 56418-56431.
    [19] FIERER N, LAUBER CL, RAMIREZ KS, ZANEVELD J, BRADFORD MA, KNIGHT R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients[J]. The ISME Journal, 2012, 6(5): 1007-1017.
    [20] REN M, ZHANG ZF, WANG XL, ZHOU ZW, CHEN D, ZENG H, ZHAO SM, CHEN LL, HU YL, ZHANG CY, LIANG YX, SHE QX, ZHANG Y, PENG N. Diversity and contributions to nitrogen cycling and carbon fixation of soil salinity shaped microbial communities in Tarim Basin[J]. Frontiers in Microbiology, 2018, 9: 431.
    [21] GREMION F, CHATZINOTAS A, HARMS H. Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil[J]. Environmental Microbiology, 2003, 5(10): 896-907.
    [22] JI HB, ZHANG Y, BARARUNYERETSE P, LI HX. Characterization of microbial communities of soils from gold mine tailings and identification of mercury-resistant strain[J]. Ecotoxicology and Environmental Safety, 2018, 165: 182-193.
    [23] FERNANDES CC, KISHI LT, LOPES EM, OMORI WP, SOUZA JAMD, ALVES LMC, LEMOS EGDM. Bacterial communities in mining soils and surrounding areas under regeneration process in a former ore mine[J]. Brazilian Journal of Microbiology, 2018, 49(3): 489-502.
    [24] VISHNIVETSKAYA TA, MOSHER JJ, PALUMBO AV, YANG ZK, PODAR M, BROWN SD, BROOKS SC, GU BH, SOUTHWORTH GR, DRAKE MM, BRANDT CC, ELIAS DA. Mercury and other heavy metals influence bacterial community structure in contaminated Tennessee streams[J]. Applied and Environmental Microbiology, 2011, 77(1): 302-311.
    [25] TAKAI KEN, OIDA H, SUZUKI Y, HIRAYAMA H, NAKAGAWA S, NUNOURA T, INAGAKI F, NEALSON KH, HORIKOSHI K. Spatial distribution of marine Crenarchaeota group I in the vicinity of deep-sea hydrothermal systems[J]. Applied and Environmental Microbiology, 2004, 70(4): 2404-2413.
    [26] YAKIMOV MM, CONO VL, SMEDILE F, DELUCA TH, JUÁREZ S, CIORDIA S, FERNÁNDEZ M, ALBAR JP, FERRER M, GOLYSHIN PN, GIULIANO L. Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea)[J]. The ISME Journal, 2011, 5(6): 945-961.
    [27] 余润兰, 石丽娟, 周丹, 邱冠周, 曾伟民. 生物浸出过程中微生物协同作用机制的研究进展[J]. 中国有色金属学报, 2013, 23(10): 3006-3014. YU RL, SHI LJ, ZHOU D, QIU GZ, ZENG WM. Research development of microorganism synergy mechanisms during bioleaching[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(10): 3006-3014(in Chinese).
    [28] GHOSH W, DAM B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea[J]. FEMS Microbiology Reviews, 2009, 33(6): 999-1043.
    [29] 冯云飞, 刘丽红, 张雷, 雷迪, 索雲凯, 屈霜. 硫氧化细菌在废水处理中的应用[J]. 当代化工, 2021, 50(6): 1444-1449. FENG YF, LIU LH, ZHANG L, LEI D, SUO YK, QU S. Application of sulfur oxidizing bacteria in wastewater treatment[J]. Contemporary Chemical Industry, 2021, 50(6): 1444-1449(in Chinese).
    [30] 刘阳, 姜丽晶, 邵宗泽. 硫氧化细菌的种类及硫氧化途径的研究进展[J]. 微生物学报, 2018, 58(2): 191-201. LIU Y, JIANG LJ, SHAO ZZ. Advances in sulfur-oxidizing bacterial taxa and their sulfur oxidation pathways[J]. Acta Microbiologica Sinica, 2018, 58(2): 191-201(in Chinese).
    [31] NGUYEN PM, DO PT, PHAM YB, DOAN TO, NGUYEN XC, LEE WK, NGUYEN DD, VADIVELOO A, UM MJ, NGO HH. Roles, mechanism of action, and potential applications of sulfur-oxidizing bacteria for environmental bioremediation[J]. Science of the Total Environment, 2022, 852: 158203.
    [32] IMHOFF JF, THIEL V. Phylogeny and taxonomy of Chlorobiaceae[J]. Photosynthesis Research, 2010, 104(2): 123-136.
    [33] ENDE FP, MEIER J, GEMERDEN H. Syntrophic growth of sulfate-reducing bacteria and colorless sulfur bacteria during oxygen limitation[J]. FEMS Microbiology Ecology, 2006, 23(1): 65-80.
    [34] WEISSGERBER T, DOBLER N, POLEN T, LATUS J, STOCKDREHER Y, DAHL C. Genome-wide transcriptional profiling of the purple sulfur bacterium Allochromatium vinosum DSM 180T during growth on different reduced sulfur compounds[J]. Journal of Bacteriology, 2013, 195(18): 4231-4245.
    [35] HEGLER F, LÖSEKANN-BEHRENS T, HANSELMANN K, BEHRENS S, KAPPLER A. Influence of seasonal and geochemical changes on the geomicrobiology of an iron carbonate mineral water spring[J]. Applied and Environmental Microbiology, 2012, 78(20): 7185-7196.
    [36] PRONK JT, BRUYN JC, BOS P, KUENEN JG. Anaerobic growth of Thiobacillus ferrooxidans[J]. Applied and Environmental Microbiology, 1992, 58(7): 2227-2230.
    [37] CHAKRABORTY A, RODEN EE, SCHIEBER J, PICARDAL F. Enhanced growth of Acidovorax sp. strain 2AN during nitrate-dependent Fe(II) oxidation in batch and continuous-flow systems[J]. Applied and Environmental Microbiology, 2011, 77(24): 8548-8556.
    [38] OSWALD K, GRAF JS, LITTMANN S, TIENKEN D, BRAND A, WEHRLI B, ALBERTSEN M, DAIMS H, WAGNER M, KUYPERS MM, SCHUBERT CJ, MILUCKA J. Crenothrix are major methane consumers in stratified lakes[J]. The ISME Journal, 2017, 11(9): 2124-2140.
    [39] PIRSAHEB M, ZADSAR S, RASTEGAR SO, GU TY, HOSSINI H. Bioleaching and ecological toxicity assessment of carbide slag waste using Acidithiobacillus bacteria[J]. Environmental Technology & Innovation, 2021, 22: 101480.
    [40] POURHOSSEIN F, MOUSAVI SM. Improvement of gold bioleaching extraction from waste telecommunication printed circuit boards using biogenic thiosulfate by Acidithiobacillus thiooxidans[J]. Journal of Hazardous Materials, 2023, 450: 131073.
    [41] LIU H, GU GH, XU YB. Surface properties of pyrite in the course of bioleaching by pure culture of Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans[J]. Hydrometallurgy, 2011, 108(1/2): 143-148.
    [42] 魏嘉欣. 生物冶金及其应用研究进展[J]. 江西化工, 2020(3): 48-53. WEI JX. Research progress of bio-metallurgy and its application[J]. Jiangxi Chemical Industry, 2020(3): 48-53(in Chinese).
    [43] 程义, 李宗春, 咸会杰, 范兴建. 浸矿微生物及其浸矿机理的研究进展[J]. 化学工程与装备, 2011(3): 148-150. CHENG Y, LI ZC, XIAN HJ, FAN XJ. Research progress of leaching microorganisms and their leaching mechanism[J]. Chemical Engineering & Equipment, 2011(3): 148-150(in Chinese).
    [44] 朱宏飞, 李辉, 刘东奇. 三种浸矿细菌协同作用的回顾及展望[J]. 微生物学通报, 2016, 43(12): 2730-2737. ZHU HF, LI H, LIU DQ. A review of synergy development and prospect of three leaching bacteria[J]. Microbiology China, 2016, 43(12): 2730-2737(in Chinese).
    [45] AI CB, YAN Z, CHAI HS, GU TY, WANG JJ, CHAI LY, QIU GZ, ZENG WM. Increased chalcopyrite bioleaching capabilities of extremely thermoacidophilic Metallosphaera sedula inocula by mixotrophic propagation[J]. Journal of Industrial Microbiology & Biotechnology, 2019, 46(8): 1113-1127.
    [46] JOHNSON DB. Acidophilic microbial communities: candidates for bioremediation of acidic mine effluents[J]. International Biodeterioration & Biodegradation, 1995, 35(1/2/3): 41-58.
    [47] 马智慧, 王亚娥, 李杰. 铁氧化菌特性及其在环境污染治理中的应用[J]. 环境科学与管理, 2011, 36(11): 67-71. MA ZH, WANG YE, LI J. Properties of iron-oxidizing bacteria and its applications in environmental pollution control[J]. Environmental Science and Management, 2011, 36(11): 67-71(in Chinese).
    [48] LI XQ, MENG DL, LI J, YIN HQ, LIU HW, LIU XD, CHENG C, XIAO YH, LIU ZH, YAN ML. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination[J]. Environmental Pollution, 2017, 231(Pt 1): 908-917.
    [49] CHEN LX, HU M, HUANG LN, HUA ZS, KUANG JL, LI SJ, SHU WS. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage[J]. The ISME Journal, 2015, 9(7): 1579-1592.
    [50] SHE JY, LIU J, HE HP, ZHANG Q, LIN YY, WANG J, YIN ML, WANG LL, WEI XD, HUANG YL, CHEN CZ, LIN WL, CHEN N, XIAO TF. Microbial response and adaption to thallium contamination in soil profiles[J]. Journal of Hazardous Materials, 2022, 423: 127080.
    [51] GENG HH, WANG F, YAN CC, MA S, ZHANG YY, QIN QZ, TIAN ZJ, LIU RP, CHEN HL, ZHOU BH, YUAN RF. Rhizosphere microbial community composition and survival strategies in oligotrophic and metal(loid) contaminated iron tailings areas[J]. Journal of Hazardous Materials, 2022, 436: 129045.
    [52] MOMPER L, JUNGBLUTH SP, LEE MD, AMEND JP. Energy and carbon metabolisms in a deep terrestrial subsurface fluid microbial community[J]. The ISME Journal, 2017, 11(10): 2319-2333.
    [53] CHEN QR, FAN JF, MING HX, SU J, WANG YT, WANG B. Effects of environmental factors on denitrifying bacteria and functional genes in sediments of Bohai Sea, China[J]. Marine Pollution Bulletin, 2020, 160: 111621.
    [54] REGAN K, STEMPFHUBER B, SCHLOTER M, RASCHE F, PRATI D, PHILIPPOT L, BOEDDINGHAUS RS, KANDELER E, MARHAN S. Spatial and temporal dynamics of nitrogen fixing, nitrifying and denitrifying microbes in an unfertilized grassland soil[J]. Soil Biology and Biochemistry, 2017, 109: 214-226.
    [55] WALTER A, ANDREAS R, WERNER K, URSULA P, ALFRED P. Nucleotide sequence of a 24,206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumoniae[J]. Journal of Molecular Biology, 1988, 203(3): 715-738.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈晨,陈浬,李彦澄,唐欣,王乐乐,赵若男. 贵州典型煤矸石堆场微生物群落结构及功能特征[J]. 微生物学通报, 2023, 50(12): 5300-5319

复制
分享
文章指标
  • 点击次数:354
  • 下载次数: 860
  • HTML阅读次数: 506
  • 引用次数: 0
历史
  • 收稿日期:2023-04-27
  • 录用日期:2023-06-12
  • 在线发布日期: 2023-12-06
  • 出版日期: 2023-12-20
文章二维码