科微学术

微生物学通报

灯盏花内生真菌多样性、群落结构及生态功能预测
作者:
基金项目:

云南省教育厅科学研究基金(2022J0444);国家自然科学基金(42267059, 41867026);云南省重金属污染区农作物安全生产应用研发国际联合实验室


Diversity, community structure, and ecological roles of endophytic fungi in Erigeron breviscapus
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】灯盏花(Erigeron breviscapus)是国内知名的传统中药材,但关于灯盏花内生真菌多样性、群落结构和生态功能研究报道比较缺乏。【目的】探究灯盏花不同药用部位内生真菌多样性、群落结构组成及生态功能。【方法】采用ITS序列的高通量测序技术对比研究云南道地药材灯盏花根、茎、叶和花的内生菌群落结构及生物多样性差异,并利用FUNGuild数据库预测真菌群落生态功能。【结果】12个样品共获得540个操作分类单元(operational taxonomic unit, OTU),分属于5个门22个纲55个目114个科188个属。4个不同药用部位共有的OTU数目仅占14.45%,以根部独有OTU最多。各组织均以子囊菌门和担子菌门为优势菌门;其中,根部以子囊菌门为主,花部位以担子菌门为主。亚隔孢壳属(Didymella)为灯盏花植物的核心属,在各组织中均有分布;其余优势属尚有线黑粉菌属(Filobasidium)、Cystofilobasidium、织球壳属(Plectosphaerella),灯盏花4个组织中优势属和特有属分布各不相同。α多样性分析表明,根部内生真菌丰度显著高于其他组织,但多样性方面组织差异不明显。PCoA结果表明,根部菌落结构相对独立,而叶与茎中菌落结构较为相似。利用FUNGuild数据库分析发现,腐生真菌在各组织中占比较高,并含有大量未知功能菌群。【结论】灯盏花不同药用部位内生真菌群落组成存在明显差异,具有组织偏好。以上研究完善了灯盏花内生真菌资源的生物信息,为灯盏花内生真菌资源的开发利用提供了理论依据。

    Abstract:

    [Background] Erigeron breviscapus is a famous Chinese medicinal plant, while little is known about the diversity, community structure, and ecological roles of endophytic fungi (EF) in this plant. [Objective] To reveal the diversity, community structure, and ecological roles of EF in E. breviscapus. [Methods] The high-throughput sequencing of the ITS region was performed to profile the fungal community in the roots, stems, leaves, and flowers of E. breviscapus in Yunnan. FUNGuild was employed to predict the ecological functions of the fungi. [Results] A total of 540 operational taxonomic units (OTUs) were obtained from 12 samples. All of the OTUs were assigned into 188 genera, 114 families, 55 orders, 22 classes of 5 phyla. Only 14.45% of OTUs were shared by the four medicinal parts, and the unique OTUs were the most in the roots. Ascomycota and Basidiomycota were the dominant phyla in all the samples. The EF in the roots and flowers were dominated by Ascomycota and Basidiomycota, respectively. Didymella was the dominant genus, existing in all the four organs. Other dominant genera were Filobasidium, Cystofilobasidium and Plectosphaerella. The dominant and unique genera of EF varied in the four organs of E. breviscapus. The alpha diversity analysis showed that the roots had the highest richness of EF, while there was no significant difference in the diversity of EF among the four organs. Principal coordinate analysis indicated that the EF had similar community structures between leaves and stems, while the composition of EF in roots was different. FUNGuild prediction revealed that saprophytic fungi accounted for a high proportion in the EF of different samples and contained a large number of undefined taxa. [Conclusion] The EF of E. breviscapus has significant differences in community structure among different organs and demonstrates organ specificity. The findings provide a theoretical reference for the further development and utilization of EF resources in E. breviscapus.

    参考文献
    [1] TRIVEDI P, LEACH JE, TRINGE SG, SA TM, SINGH BK. Plant-microbiome interactions:from community assembly to plant health[J]. Nature Reviews Microbiology, 2020, 18(11):607-621.
    [2] DELAUX PM, SCHORNACK S. Plant evolution driven by interactions with symbiotic and pathogenic microbes[J]. Science, 2021, 371(6531):eaba6605.
    [3] KHATTAB AR, FARAG MA. Marine and terrestrial endophytic fungi:a mine of bioactive xanthone compounds, recent progress, limitations, and novel applications[J]. Critical Reviews in Biotechnology, 2022, 42(3):403-430.
    [4] ZHENG RH, LI SJ, ZHANG X, ZHAO CQ. Biological activities of some new secondary metabolites isolated from endophytic fungi:a review study[J]. International Journal of Molecular Sciences, 2021, 22(2):959.
    [5] GÓMEZ OC, LUIZ JHH. Endophytic fungi isolated from medicinal plants:future prospects of bioactive natural products from Tabebuia/Handroanthus endophytes[J]. Applied Microbiology and Biotechnology, 2018, 102(21):9105-9119.
    [6] FAN H, LIN P, KANG Q, ZHAO ZL, WANG J, CHENG JY. Metabolism and pharmacological mechanisms of active ingredients in Erigeron breviscapus[J]. Current Drug Metabolism, 2021, 22(1):24-39.
    [7] 李治滢, 杨丽源, 周斌, 李绍兰, 陈有为, 张琦. 灯盏细辛内生真菌的研究Ⅰ:菌种分离及其分类鉴定[J]. 云南大学学报(自然科学版), 2003, 25(1):65-68. LI ZY, YANG LY, ZHOU B, LI SL, CHEN YW, ZHANG Q. Study on endophytic fungi in Erigeron breviscapus Ⅰ:isolation and identification of endophytic fungi[J]. Journal of Yunnan University (Natural Sciences Edition), 2003, 25(1):65-68(in Chinese).
    [8] 何永美, 湛方栋, 宣灵, 祖艳群, 高召华, 李元. 灯盏花产黄酮内生真菌的筛选及其产黄酮能力的初步研究[J]. 农业环境科学学报, 2010, 29(S1):226-229. HE YM, ZHAN FD, XUAN L, ZU YQ, GAO ZH, LI Y. Selection and flavonoid producing capacity of endophytic fungi isolated from Erigeron breviscapus[J]. Journal of Agro-Environment Science, 2010, 29(S1):226-229(in Chinese).
    [9] 杨梦莉, 赖泳红, 郭凤根, 崔晓龙, 王永霞, 肖炜, 李治滢. 灯盏花内生真菌分离及其产黄酮内生真菌的初步研究[J]. 西南农业学报, 2018, 31(2):318-321. YANG ML, LAI YH, GUO FG, CUI XL, WANG YX, XIAO W, LI ZY. Isolation and selection of flavones-forming endophytic fungi from Erigeron breviscapus[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(2):318-321(in Chinese).
    [10] RINKE C, SCHWIENTEK P, SCZYRBA A, IVANOVA NN, ANDERSON IJ, CHENG JF, DARLING A, MALFATTI S, SWAN BK, GIES EA, DODSWORTH JA, HEDLUND BP, TSIAMIS G, SIEVERT SM, LIU WT, EISEN JA, HALLAM SJ, KYRPIDES NC, STEPANAUSKAS R, RUBIN EM, et al. Insights into the phylogeny and coding potential of microbial dark matter[J]. Nature, 2013, 499(7459):431-437.
    [11] SAGITA R, QUAX WJ, HASLINGER K. Current state and future directions of genetics and genomics of endophytic fungi for bioprospecting efforts[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9:649906.
    [12] U'REN JM, RIDDLE JM, MONACELL JT, CARBONE I, MIADLIKOWSKA J, ARNOLD AE. Tissue storage and primer selection influence pyrosequencing-based inferences of diversity and community composition of endolichenic and endophytic fungi[J]. Molecular Ecology Resources, 2014, 14(5):1032-1048.
    [13] GRAPER AL, NOYSZEWSKI AK, ANDERSON NO, SMITH AG. Variability in ITS1 and ITS2 sequences of historic herbaria and extant (fresh) Phalaris species (Poaceae)[J]. BMC Plant Biology, 2021, 21(1):515.
    [14] CAPORASO JG, KUCZYNSKI J, STOMBAUGH J, BITTINGER K, BUSHMAN FD, COSTELLO EK, FIERER N, PEÑA AG, GOODRICH JK, GORDON JI, HUTTLEY GA, KELLEY ST, KNIGHTS D, KOENIG JE, LEY RE, LOZUPONE CA, MCDONALD D, MUEGGE BD, PIRRUNG M, REEDER J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5):335-336.
    [15] NGUYEN NH, SONG ZW, BATES ST, BRANCO S, TEDERSOO L, MENKE J, SCHILLING JS, KENNEDY PG. FUNGuild:an open annotation tool for parsing fungal community datasets by ecological guild[J]. Fungal Ecology, 2016, 20:241-248.
    [16] 周婕, 苗一方, 方楷, 陈林, 杨志平, 董星凡, 张汉波. 紫茎泽兰内生真菌及其根际土壤真菌的多样性研究[J]. 生态科学, 2019, 38(5):1-7. ZHOU J, MIAO YF, FANG K, CHEN L, YANG ZP, DONG XF, ZHANG HB. Diversity of the endophytic and rhizosphere soil fungi of Ageratina adenophora[J]. Ecological Science, 2019, 38(5):1-7(in Chinese).
    [17] CHEN M, CHEN JZ, LIU JM, WU MY, YAN Q, LI P, HUANG LT, XIAO XF. Diversity analysis of rhizosphere soil fungi and endophytic fungi in Ampelocalamus luodianensis[J]. Acta Ecologica Sinica, 2021, 41(10):4120-4130.
    [18] ZHAO Y, XIONG Z, WU GL, BAI WX, ZHU ZQ, GAO YH, PARMAR S, SHARMA VK, LI HY. Fungal endophytic communities of two wild Rosa varieties with different powdery mildew susceptibilities[J]. Frontiers in Microbiology, 2018, 9:2462.
    [19] SIDDIQUE AB, BIELLA P, UNTERSEHER M, ALBRECTSEN BR. Mycobiomes of young beech trees are distinguished by organ rather than by habitat, and community analyses suggest competitive interactions among twig fungi[J]. Frontiers in Microbiology, 2021, 12:646302.
    [20] WANG RT, ZHANG QC, JU MX, YAN SY, ZHANG QQ, GU PW. The endophytic fungi diversity, community structure, and ecological function prediction of Sophora alopecuroides in Ningxia, China[J]. Microorganisms, 2022, 10(11):2099.
    [21] ARNOLD AE, LUTZONI F. Diversity and host range of foliar fungal endophytes:are tropical leaves biodiversity hotspots?[J]. Ecology, 2007, 88(3):541-549.
    [22] CHEN Q, JIANG JR, ZHANG GZ, CAI L, CROUS PW. Resolving the Phoma enigma[J]. Studies in Mycology, 2015, 82:137-217.
    [23] LEE DH, CHOI KM, JUNG CR, LEE SH. First report of Didymella bellidis causing leaf spots on Angelica gigas in Korea[J]. Journal of Plant Pathology, 2020, 102(4):1297.
    [24] WANG X, WU X, JIANG SL, YIN QX, LI DX, WANG Y, WANG DL, CHEN Z. Whole genome sequence and gene annotation resource for Didymella bellidis associated with tea leaf spot[J]. Plant Disease, 2021, 105(4):1168-1170.
    [25] 林丽飞, 胡先奇, 刘春国. 灯盏花叶斑病病原物的分离及鉴定[J]. 植物保护, 2006, 32(4):92-93. LIN LF, HU XQ, LIU CG. Isolation and identification of the pathogens causing leaf rot disease of Erigeron breviscapus[J]. Plant Protection, 2006, 32(4):92-93(in Chinese).
    [26] SU SW, ZHAO DG, YUAN B, MA YY, ZHU SY, XU KY, LEE G, HO CT, HUANG QR. Biosynthesis of 6- and 7-mono-demethylated nobiletins by a newly isolated strain of yeast[J]. Journal of Agricultural and Food Chemistry, 2022, 70(49):15439-15448.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵祎,石瑶,汤雯婷,李海燕. 灯盏花内生真菌多样性、群落结构及生态功能预测[J]. 微生物学通报, 2023, 50(11): 4812-4824

复制
分享
文章指标
  • 点击次数:316
  • 下载次数: 1286
  • HTML阅读次数: 632
  • 引用次数: 0
历史
  • 收稿日期:2023-03-28
  • 录用日期:2023-05-23
  • 在线发布日期: 2023-11-06
  • 出版日期: 2023-11-20
文章二维码