科微学术

微生物学通报

微生物种间直接电子传递机理及应用研究进展
作者:
基金项目:

国家自然科学基金水圈微生物重大研究计划重点项目(91851211)


Mechanism and application of direct interspecies electron transfer
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [69]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    微生物胞内产生的电子转移到其他电子受体而获得能量的过程称为微生物胞外电子传递,其中,另一微生物作为电子受体时发生的电子传递称为微生物种间电子传递。根据微生物种间电子传递机制,可分间接种间电子传递和种间直接电子传递。由于种间直接电子传递不需要其他物质介导,因此较间接种间电子传递效率更高、能量利用更高。本文系统阐述了微生物进行胞外电子传递的机理及应用,重点分析了种间直接电子传递机理,并概述种间直接电子传递应用领域,为寻找更多电连接的微生物群落以及应用微生物提供参考。

    Abstract:

    Extracellular electron transfer (EET) refers to the process of transferring electrons generated in microorganisms to other electron acceptors to obtain energy, and the electron transfer that occurs between two different microorganisms is called microbial interspecies electron transfer (IET). IET can occur in two ways: mediated interspecies electron transfer (MIET) and direct interspecies electron transfer (DIET). Without of the need for other material mediation, DIET has higher efficiency and energy utilization efficiency than MIET. This paper systematically expounds the mechanisms and applications of EET in microorganisms, with focus on the mechanisms and potential application fields of DIET. This review aims to provide a reference for finding more electrically connected microbial communities and applied microorganisms.

    参考文献
    [1] PENG ZF, SHI MM, XIA KM, DONG YR, SHI L. Degradation of 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) via the Fenton reaction driven by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1[J]. Environmental Pollution (Barking, Essex:1987), 2020, 266(Pt 1):115413.
    [2] SHI MM, XIA KM, PENG ZF, JIANG YG, DONG YR, Shi L. Differential degradation of BDE-3 and BDE-209 by the Shewanella oneidensis MR-1-mediated Fenton reaction[J]. International Biodeterioration & Biodegradation, 2021, 158:105165.
    [3] 邱轩, 石良. 微生物和含铁矿物之间的电子交换[J]. 化学学报, 2017, 75(6):583-593. QIU X, SHI L. Electrical interplay between microorganisms and iron-bearing minerals[J]. Acta Chimica Sinica, 2017, 75(6):583-593(in Chinese).
    [4] PENG ZF, LIU ZY, JIANG YG, DONG YR, SHI L. In vivo interactions between Cyc2 and Rus as well as Rus and Cyc1 of Acidithiobacillus ferrooxidans during extracellular oxidization of ferrous iron[J]. International Biodeterioration & Biodegradation, 2022, 173:105453.
    [5] 刘娟, 李晓旭, 刘枫, 张逸潇. 铁氧化物-微生物界面电子传递的分子机制研究进展[J]. 矿物岩石地球化学通报, 2018, 37(1):39-47, 159. LIU J, LI XX, LIU F, ZHANG YX. Research advantages on molecular mechanisms of interfacial electron transfer between iron oxide and microbe[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(1):39-47, 159(in Chinese).
    [6] SHI L, DONG HL, REGUERA G, BEYENAL H, LU AH, LIU J, YU HQ, FREDRICKSON JK. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nature Reviews Microbiology, 2016, 14(10):651-662.
    [7] VERMA J, KUMAR D, SINGH N, KATTI SS, SHAH YT. Electricigens and microbial fuel cells for bioremediation and bioenergy production:a review[J].Environmental Chemistry Letters, 2021, 19(3):2091-2126.
    [8] JONATHAN R, LOVLRY DR. Microbial detoxification of metals and radionuclides[J]. Current Opinion in Biotechnology, 2001, 12(3):248-253.
    [9] BARUA S, DHAR B. Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion[J]. Bioresource Technology, 2017, 244:698-707.
    [10] SIEBER JR, MCINERNEY MJ, GUNSALUS RP. Genomic insights into syntrophy:the paradigm for anaerobic metabolic cooperation[J]. Annual Review of Microbiology, 2012, 66:429-452.
    [11] 蒋海明, 王路路, 李侠. 微生物种间直接电子传递方式耦合产甲烷研究进展[J]. 高校化学工程学报, 2019, 33(6):1303-1313. JIANG HM, WANG LL, LI X. Advances in co-culture stoichiometrically producing methane via direct interspecies electron transfer within microbes[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(6):1303-1313(in Chinese).
    [12] SUMMERS ZM, FOGARTY HE, LEANG C, FRANKS AE, MALVANKAR NS, LOVLEY DR. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria[J]. Science, 2010, 330(6009):1413-1415.
    [13] ZHAO ZQ, LI Y, ZHANG YB, LOVLEY DR. Sparking anaerobic digestion:promoting direct interspecies electron transfer to enhance methane production[J]. iScience, 2020, 23(12):101794.
    [14] DANTAS JM, MORGADO L, AKLUJKAR M, BRUIX M, LONDER YY, SCHIFFER M, POKKULURI PR, SALGUEIRO CA. Rational engineering of Geobacter sulfurreducens electron transfer components:a foundation for building improved Geobacter-based bioelectrochemical technologies[J]. Frontiers in Microbiology, 2015, 6:752.
    [15] STORCK T, VIRDIS B, BATSTONE DJ. Modelling extracellular limitations for mediated versus direct interspecies electron transfer[J]. The ISME Journal, 2016, 10(3):621-631.
    [16] MCINERNEY MJ, SIEBER JR, GUNSALUS RP. Syntrophy in anaerobic global carbon cycles[J]. Current Opinion in Biotechnology, 2009, 20(6):623-632.
    [17] STAMS AJM, PLUGGE CM. Electron transfer in syntrophic communities of anaerobic bacteria and archaea[J]. Nature Reviews Microbiology, 2009, 7(8):568-577.
    [18] MORRIS BEL, HENNEBERGER R, HUBER H, MOISSL-EICHINGER C. Microbial syntrophy:interaction for the common good[J]. FEMS Microbiology Reviews, 2013, 37(3):384-406.
    [19] LOVLEY DR, UEKI T, ZHANG T, MALVANKAR NS, SHRESTHA PM, FLANAGAN KA, AKLUJKAR M, BUTLER JE, GILOTEAUX L, ROTARU AE, HOLMES DE, FRANKS AE, ORELLANA R, RISSO C, NEVIN KP. Geobacter[M]//Advances in Microbial Physiology. Amsterdam:Elsevier, 2011:1-100.
    [20] SIEBER JR, LE HM, McINERNEY MJ. The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism[J]. Environmental Microbiology, 2014, 16(1):177-188.
    [21] OKAMOTO A, NAKAMURA R, NEALSON KH, HASHIMOTO K. Bound flavin model suggests similar electron-transfer mechanisms in Shewanella and Geobacter[J]. ChemElectroChem, 2014, 1(11):1808-1812.
    [22] HERNANDEZ ME, KAPPLER A, NEWMAN DK. Phenazines and other redox-active antibiotics promote microbial mineral reduction[J]. Applied and Environmental Microbiology, 2004, 70(2):921-928.
    [23] FLYNN TM, O'LOUGHLIN EJ, MISHRA B, DICHRISTINA TJ, KEMNER KM. Sulfur-mediated electron shuttling during bacterial iron reduction[J]. Science, 2014, 344(6187):1039-1042.
    [24] FRIEDRICH MW, FINSTER KW. How sulfur beats iron[J]. Science, 2014, 344(6187):974-975.
    [25] LOVLEY DR, COATES JD, BLUNT-HARRIS EL, PHILLIPS EJP, WOODWARD JC. Humic substances as electron acceptors for microbial respiration[J]. Nature, 1996, 382(6590):445-448.
    [26] ZHENG Y, KAPPLER A, XIAO Y, YANG F, MAHADEVA GD, ZHAO F. Redox-active humics support interspecies syntrophy and shift microbial community[J].Science China Technological Sciences, 2019, 62(10):1695-1702.
    [27] KAPPLER A, WUESTNER ML, RUECKER A, HARTER J, HALAMA M, BEHRENS S. Biochar as an electron shuttle between bacteria and Fe(III) minerals[J]. Environmental Science & Technology Letters, 2014, 1(8):339-344.
    [28] KATO S, HASHIMOTO K, WATANABE K. Microbial interspecies electron transfer via electric currents through conductive minerals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(25):10042-10046.
    [29] 张玉龙, 陈雪丽, 吴云当. 电子穿梭体及其介导的环境与地球化学过程研究进展[J]. 生态环境学报, 2021, 30(1):213-222. ZHANG YL, CHEN XL, WU YD. Electron shuttle-mediated microbial extracellular electron transfer:mechanisms and geochemical implications[J]. Ecology and Environment Sciences, 2021, 30(1):213-222(in Chinese).
    [30] REGUERA G, MCCARTHY KD, MEHTA T, NICOLL JS, TUOMINEN MT, LOVLEY DR. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045):1098-1101.
    [31] ZHAO Z, SUN C, LI Y, PENG H, ZHANG YB. Upgrading current method of anaerobic co-digestion of waste activated sludge for high-efficiency methanogenesis:establishing direct interspecies electron transfer via ethanol-type fermentation[J]. Renewable Energy, 2020, 148:523-533.
    [32] KOUZUMA A, KATO S, WATANABE K. Microbial interspecies interactions:recent findings in syntrophic consortia[J]. Frontiers in Microbiology, 2015, 6:477.
    [33] MORITA M, MALVANKAR NS, FRANKS AE, SUMMERS ZM, GILOTEAUX L, ROTARU AE, ROTARU C, LOVLEY DR. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates[J]. mBio, 2011, 2(4):e00159-11.
    [34] NIELSEN LP, RISGAARD-PETERSEN N, FOSSING H, CHRISTENSEN PB, SAYAMA M. Electric currents couple spatially separated biogeochemical processes in marine sediment[J]. Nature, 2010, 463(7284):1071-1074.
    [35] PFEFFER C, LARSEN S, SONG J, DONG MD, BESENBACHER F, MEYER RL, KJELDSEN KU, SCHREIBER L, GORBY YA, EL-NAGGAR MY, LEUNG KM, SCHRAMM A, RISGAARD-PETERSEN N, NIELSEN LP. Filamentous bacteria transport electrons over centimetre distances[J]. Nature, 2012, 491(7423):218-221.
    [36] 张多瑞, 聂珍媛, 刘李柱, 杨洪英, 夏金兰. 微生物胞外电子传递过程及其应用研究进展[J]. 生命科学, 2018, 30(6):680-689. ZHANG DR, NIE ZY, LIU LZ, YANG HY, XIA JL. Mechanisms of microbial extracellular electron transfer and its application[J]. China Industrial Economics, 2018, 30(6):680-689(in Chinese).
    [37] INOUE K, LEANG C, FRANKS AE, WOODARD TL, NEVIN KP, LOVLEY DR. Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of Geobacter sulfurreducens[J]. Environmental Microbiology Reports, 2011, 3(2):211-217.
    [38] LIU X, ZHAN J, JING XY, ZHOU SG, LOVLEY DR. A pilin chaperone required for the expression of electrically conductive Geobacter sulfurreducens pili[J]. Environmental Microbiology, 2019, 21(7):2511-2522.
    [39] WANG FB, GU YQ, O'BRIEN JP, YI SM, YALCIN SE, SRIKANTH V, SHEN C, VU D, ING NL, HOCHBAUM AI, EGELMAN EH, MALVANKAR NS. Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers[J]. Cell, 2019, 177(2):361-369.e10.
    [40] PENG L, ZHANG Y. Cytochrome OmcZ is essential for the current generation by Geobacter sulfurreducens under low electrode potential[J]. Electrochimica Acta, 2017, 228:447-452.
    [41] LOVLEY DR, WALKER DJF. Geobacter protein nanowires[J]. Frontiers in Microbiology, 2019, 10:2078.
    [42] WANG FB, CRAIG L, LIU X, RENSING C, EGELMAN EH. Microbial nanowires:type IV pili or cytochrome filaments?[J]. Trends in Microbiology, 2023, 31(4):384-392.
    [43] YALCIN S E, MALVANKAR NS. The blind men and the filament:understanding structures and functions of microbial nanowires[J]. Current Opinion in Chemical Biology, 2020, 59:193-201.
    [44] FILMAN DJ, MARINO SF, WARD JE, YANG L, MESTER Z, BULLITT E, LOVLEY DR, STRAUSS M. Cryo-EM reveals the structural basis of long-range electron transport in a cytochrome-based bacterial nanowire[J]. Communications Biology, 2019, 2:219.
    [45] LOVLEY DR, NEVIN KP. A shift in the current:new applications and concepts for microbe-electrode electron exchange[J]. Current Opinion in Biotechnology, 2011, 22(3):441-448.
    [46] LIU X, ZHUO SY, RENSING C, ZHOU SG. Syntrophic growth with direct interspecies electron transfer between pili-free Geobacter species[J]. The ISME Journal, 2018, 12(9):2142-2151.
    [47] LEANG C, QIAN XL, MESTER T, LOVLEY DR. Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens[J]. Applied and Environmental Microbiology, 2010, 76(12):4080-4084.
    [48] ROTARU AE, SHRESTHA PM, LIU FH, SHRESTHA M, SHRESTHA D, EMBREE M, ZENGLER K, WARDMAN C, NEVIN KP, LOVLEY DR. A new model for electron flow during anaerobic digestion:direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy & Environmental Science, 2014, 7(1):408-415.
    [49] ROTARU AE, SHRESTHA PM, LIU FH, MARKOVAITE B, CHEN SS, NEVIN KP, LOVLEY DR. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri[J]. Applied and Environmental Microbiology, 2014, 80(15):4599-4605.
    [50] GUPTA D, GUZMAN MS, BOSE A. Extracellular electron uptake by autotrophic microbes:physiological, ecological, and evolutionary implications[J]. Journal of Industrial Microbiology and Biotechnology, 2020, 47(9/10):863-876.
    [51] THAUER RK, KASTER AK, SEEDORF H, BUCKEL W, HEDDERICH R. Methanogenic Archaea:ecologically relevant differences in energy conservation[J]. Nature Reviews Microbiology, 2008, 6(8):579-591.
    [52] YEE MO, ROTARU AE. Extracellular electron uptake in Methanosarcinales is independent of multiheme c-type cytochromes[J]. Scientific Reports, 2020, 10:372.
    [53] LU J, CHANG J, LEE D. Adding carbon-based materials on anaerobic digestion performance:a mini-review[J]. Bioresource Technology, 2020, 300:122696.
    [54] CHEN SS, ROTARU AE, SHRESTHA PM, MALVANKAR NS, LIU FH, FAN W, NEVIN KP, LOVLEY DR. Promoting interspecies electron transfer with biochar[J]. Scientific Reports, 2014, 4:5019.
    [55] ZHANG JS, ZHAO WQ, ZHANG HW, WANG ZJ, FAN CF, ZANG LH. Recent achievements in enhancing anaerobic digestion with carbon- based functional materials[J]. Bioresource Technology, 2018, 266:555-567.
    [56] YIN QD,WU GX. Advances in direct interspecies electron transfer and conductive materials:electron flux, organic degradation and microbial interaction[J]. Biotechnology Advances, 2019, 37(8):107443.
    [57] LOVLEY DR. Syntrophy goes electric:direct interspecies electron transfer[J]. Annual Review of Microbiology, 2017, 71:643-664.
    [58] LOVLEY DR, ANDERSON RT. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface[J]. Hydrogeology Journal, 2000, 8(1):77-88.
    [59] MAGNUSON TS,HODGES-MYERSON AL, LOVLEY DR. Characterization of a membrane-bound NADH-dependent Fe3+ reductase from the dissimilatory Fe3+-reducing bacterium Geobacter sulfurreducens[J]. FEMS Microbiology Letters, 2000, 185(2):205-211.
    [60] NEVIN KP, LOVLEY DR. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens[J]. Applied and Environmental Microbiology, 2000, 66(5):2248-2251.
    [61] NEVIN KP, LOVLEY DR. Potential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments[J]. Environmental Science & Technology, 2000, 34(12):2472-2478.
    [62] WANG W, LEE D. Direct interspecies electron transfer mechanism in enhanced methanogenesis:a mini-review[J]. Bioresource Technology, 2021, 330:124980.
    [63] THAUER RK. Biochemistry of methanogenesis:a tribute to marjory stephenson:1998 marjory stephenson prize lecture[J]. Microbiology, 1998, 144(9):2377-2406.
    [64] SHIN SG, HAN G, LIM J, LEE C, HWANG S. A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater[J]. Water Research, 2010, 44(17):4838-4849.
    [65] CHENG QW, CALL DF. Hardwiring microbes via direct interspecies electron transfer:mechanisms and applications[J]. Environmental Science:Processes & Impacts, 2016, 18(8):968-980.
    [66] NISHIO K, HASHIMOTO K, WATANABE K. Light/electricity conversion by a self-organized photosynthetic biofilm in a single-chamber reactor[J]. Applied Microbiology and Biotechnology, 2010, 86(3):957-964.
    [67] NISHIO K, HASHIMOTO K, WATANABE K. Light/electricity conversion by defined cocultures of Chlamydomonas and Geobacter[J]. Journal of Bioscience and Bioengineering, 2013, 115(4):412-417.
    [68] HA PT, LINDEMANN SR, SHI L, DOHNALKOVA AC, FREDRICKSON JK, MADIGAN MT, BEYENAL H. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer[J]. Nature Communications, 2017, 8:13924.
    [69] HUANG LY, LIU X, TANG JH, YU LP, ZHOU SG. Electrochemical evidence for direct interspecies electron transfer between Geobacter sulfurreducens and Prosthecochloris aestuarii[J]. Bioelectrochemistry, 2019, 127:21-25.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姜杰,冯旗,贺鹏宸,彭兆丰. 微生物种间直接电子传递机理及应用研究进展[J]. 微生物学通报, 2023, 50(10): 4694-4704

复制
分享
文章指标
  • 点击次数:301
  • 下载次数: 1842
  • HTML阅读次数: 994
  • 引用次数: 0
历史
  • 收稿日期:2023-03-06
  • 录用日期:2023-05-18
  • 在线发布日期: 2023-10-07
  • 出版日期: 2023-10-20
文章二维码