科微学术

微生物学通报

基于菌植互作的植物根际细菌钝化镉作用和机制研究进展
作者:
基金项目:

国家自然科学基金(41977199)


Role and mechanisms of cadmium passivation by plant rhizosphere bacteria based on bacteria and plants internet: a review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [68]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    土壤重金属镉(Cd)污染严重危害农产品安全生产,植物根际细菌在钝化土壤Cd和帮助作物抵御Cd胁迫方面发挥重要作用。本文首先概括在修复Cd污染土壤中得到广泛应用的植物根际细菌种类,并从根际细菌直接吸附Cd、调整土壤理化特性、调控土壤微生物群落和其他作用4方面阐述了植物根际细菌对Cd的钝化作用,其次从菌植互作角度阐述植物根系分泌物与根际细菌群落相互影响对土壤Cd的钝化作用。最后展望重金属胁迫下植物根际钝化Cd核心菌群的构建,以在新兴学科与技术的快速发展中探明植物根系-微生物互作体系的分子机制,深入开展植物根际细菌钝化修复重金属污染土壤的理论研究和实践。

    Abstract:

    Soil cadmium pollution seriously endangers the safe production of agricultural products, while plant rhizosphere bacteria play a critical role in passivating cadmium in soil and helping crops resist cadmium stress. This paper firstly summarizes the species of rhizosphere bacteria used widely in the remediation of cadmium-contaminated soils and elaborates on the mechanisms of cadmium passivation by plant rhizosphere bacteria from four aspects: direct adsorption of cadmium by rhizosphere bacteria, adjustment of soil physical and chemical characteristics, regulation of rhizosphere bacterial community and other effects. Secondly, from the perspective of bacterium-plant interaction, we expound the effects of the interactions between plant root exudates and rhizosphere bacterial community changes on soil cadmium passivation. Finally, we prospect the core flora assembly of plant rhizosphere bacteria for passivating cadmium under heavy metal stress. With this review, we aim to explore the molecular mechanism of plant root-microorganism interaction system in the context of emerging disciplines and advancing technologies and facilitate the in-depth theoretical research and practice on the remediation of heavy metal-contaminated soil by rhizosphere bacterial passivation.

    参考文献
    [1] 郭玲. 土壤重金属污染的危害以及防治措施[J]. 中国资源综合利用, 2018, 36(1):122-124. GUO L. Harm of soil heavy metal pollution and control measures[J]. China Resources Comprehensive Utilization, 2018, 36(1):122-124(in Chinese).
    [2] 张雄邦, 潘磊, 张天宇. 重金属镉污染土壤修复技术研究进展[J]. 现代矿业, 2022, 38(5):209-213, 222. ZHANG XB, PAN L, ZHANG TY. Research progress of soil remediation technology contaminated by heavy metal Cd[J]. Modern Mining, 2022, 38(5):209-213, 222(in Chinese).
    [3] WANG YR, WANG RM, FAN LY, CHEN TT, BAI YH, YU QR, LIU Y. Assessment of multiple exposure to chemical elements and health risks among residents near Huodehong lead-zinc mining area in Yunnan, Southwest China[J]. Chemosphere, 2017, 174:613-627.
    [4] PAN XD, WU PG, JIANG XG. Levels and potential health risk of heavy metals in marketed vegetables in Zhejiang, China[J]. Scientific Reports, 2016, 6:20317.
    [5] ZHANG XY, ZHONG TY, LIU L, OUYANG XY. Impact of soil heavy metal pollution on food safety in China[J]. PLoS One, 2015, 10(8):e0135182.
    [6] 黄楚珊, 胡国成, 陈棉彪, 张丽娟, 仇荣亮. 矿区家庭谷物和豆类重金属含量特征及风险评价[J]. 中国环境科学, 2017, 37(3):1171-1178. HUANG CS, HU GC, CHEN MB, ZHANG LJ, QIU RL. Heavy metal content characteristics and risk assessment of household cereal and beans from mining areas[J]. China Environmental Science, 2017, 37(3):1171-1178(in Chinese).
    [7] HUA CY, ZHUO HM, KANG AL, FANG ZT, ZHU MY, DONG MX, WANG JC, REN LJ. Contamination, risk assessment and source apportionment of the heavy metals in the soils of apple orchard in Qixia City, Shandong Province, China[J]. Stochastic Environmental Research and Risk Assessment, 2022, 36(9):2581-2595.
    [8] 綦峥, 齐越, 杨红, 张铁林, 凌娜. 土壤重金属镉污染现状、危害及治理措施[J]. 食品安全质量检测学报, 2020, 11(7):2286-2294. QI Z, QI Y, YANG H, ZHANG TL, LING N. Status, harm and treatment measures of heavy metal cadmium pollution in soil[J]. Journal of Food Safety & Quality, 2020, 11(7):2286-2294(in Chinese).
    [9] 王兴利, 王晨野, 吴晓晨, 王晶博, 穆晓东, 杨晓姝, 胡小飞, 高静. 重金属污染土壤修复技术研究进展[J]. 化学与生物工程, 2019, 36(2):1-7, 11. WANG XL, WANG CY, WU XC, WANG JB, MU XD, YANG XS, HU XF, GAO J. Research progress in remediation technology of heavy metal contaminated soil[J]. Chemistry and Bioengineering, 2019, 36(2):1-7, 11(in Chinese).
    [10] 陈文荣, 马旭佳, 郭燕萍, 徐佳慧, 韦金沁, 施洁. 镉污染土壤低吸收水稻阻隔技术研究及应用[J]. 浙江师范大学学报(自然科学版), 2021, 44(4):420-428. CHEN WR, MA XJ, GUO YP, XU JH, WEI JQ, SHI J. The research and application of low-absorption rice barrier technology in cadmium-contaminated soil[J]. Journal of Zhejiang Normal University (Natural Sciences Edition), 2021, 44(4):420-428(in Chinese).
    [11] 柴凤兰, 张帆, 吕颖捷. 重金属污染土壤生物修复技术研究进展[J]. 安徽农业科学, 2022, 50(20):9-11, 17. CHAI FL, ZHANG F, LÜ YJ. Progress in bioremediation technique of heavy? metal contaminated soil[J]. Journal of Anhui Agricultural Sciences, 2022, 50(20):9-11, 17(in Chinese).
    [12] 聂雄峰, 黄雁飞, 陈桂芬, 黄玉溢, 刘斌, 刘永贤. 植物修复重金属超标农田研究进展[J].农学学报, 2022, 12(8):48-54. NIE XF, HUANG YF, CHEN GF, HUANG YY, LIU B, LIU YX. Research progress of phytoremediation of farmland with excessive heavy metals[J]. Journal of Agriculture, 2022, 12(8):48-54(in Chinese).
    [13] 张维兰, 张悦, 刘萍, 段昌群, 刘嫦娥. 蚯蚓在植物修复重金属污染土壤中的研究进展[J]. 环境科学与技术, 2022, 45(8):155-165. ZHANG WL, ZHANG Y, LIU P, DUAN CQ, LIU CE. Research progress of earthworm in phytoremediation of heavy metal contaminated soil[J]. Environmental Science & Technology, 2022, 45(8):155-165(in Chinese).
    [14] 张艳, 邓扬悟, 罗仙平, 周朦. 土壤重金属污染以及微生物修复技术探讨[J]. 有色金属科学与工程, 2012, 3(1):63-66. ZHANG Y, DENG YW, LUO XP, ZHOU M. On soil contamination by heavy metal and microbial remediation technology[J]. Jiangxi Nonferrous Metals, 2012, 3(1):63-66(in Chinese).
    [15] 王泽煌, 王蒙, 蔡昆争, 蔡一霞, 黄飞. 细菌对重金属吸附和解毒机制的研究进展[J]. 生物技术通报, 2016, 32(12):13-18. WANG ZH, WANG M, CAI KZ, CAI YX, HUANG F. Research advances on biosorption and detoxification mechanisms of heavy metals by bacteria[J]. Biotechnology Bulletin, 2016, 32(12):13-18(in Chinese).
    [16] XU SZ, XING YH, LIU S, HUANG QY, CHEN WL. Role of novel bacterial Raoultella sp. strain X13 in plant growth promotion and cadmium bioremediation in soil[J]. Applied Microbiology and Biotechnology, 2019, 103(9):3887-3897.
    [17] 葛占标, 殷涂童, 周倩倩, 张静, 盛下放, 何琳燕. 产生物膜芽胞杆菌阻控叶菜吸收镉、铅及其修复菜地土壤的作用[J]. 南京农业大学学报, 2020, 43(1):80-88. GE ZB, YIN TT, ZHOU QQ, ZHANG J, SHENG XF, HE LY. Reduced cadmium and lead uptake by leafy vegetables and soil remediation in the presence of the biofilm-producing Bacillus strains[J]. Journal of Nanjing Agricultural University, 2020, 43(1):80-88(in Chinese).
    [18] GE YY, GE ZB, ZHENG JW, SHENG XF, HE LY. Biofilm-overproducing Bacillus subtilis B12ΔYwcc decreases Cd uptake in Chinese cabbage through increasing Cd-immobilizing related gene abundance and root surface colonization[J]. Journal of Environmental Sciences, 2022, 120:84-93.
    [19] HAN H, ZHANG H, QIN SM, ZHANG J, YAO LG, CHEN ZJ. Mechanisms of Enterobacter bugandensis TJ6 immobilization of heavy metals and inhibition of Cd and Pb uptake by wheat based on metabolomics and proteomics[J]. Chemosphere, 2021, 276:130157.
    [20] 余雪梅, 彭书明, 王洪婷, 伏媛, 李璟, 张山. 耐镉芽孢杆菌对Cd2+的吸附机制[J]. 江苏农业科学, 2019, 47(20):293-293, 294. YU XM, PENG SM, WANG HT, FU Y, LI J, ZHANG S. Adsorption mechanism of Cd2+ by cadmium-tolerant Bacillus[J]. Jiangsu Agricultural Sciences, 2019, 47(20):293-293, 294(in Chinese).
    [21] IZRAEL-ŽIVKOVIĆ L, RIKALOVIĆ M, GOJGIĆ-CVIJOVIĆ G, KAZAZIĆ S, VRVIĆ M, BRČESKI I, BEŠKOSKI V, LONČAREVIĆ B, GOPČEVIĆ K, KARADŽIĆ I. Cadmium specific proteomic responses of a highly resistant Pseudomonas aeruginosa San ai[J]. RSC Advances, 2018, 8(19):10549-10560.
    [22] WANG YL, WANG R, KOU FL, HE LY, SHENG XF. Cadmium-tolerant facultative endophytic Rhizobium larrymoorei S28 reduces cadmium availability and accumulation in rice in cadmium-polluted soil[J]. Environmental Technology & Innovation, 2022, 26:102294.
    [23] 金婷婷, 刘鹏, 黄朝表, 王芳, 徐根娣, 黄佩娜. 铝胁迫下大豆根系分泌物对根际土壤微生态的影响[J]. 土壤学报, 2008, 45(3):526-534. JIN TT, LIU P, HUANG CB, WANG F, XU GD, HUANG PN. Effect of soybean (Glycine max) root exudation on rhizospheric microbial ecosystem under aluminum stress[J]. Acta Pedologica Sinica, 2008, 45(3):526-534(in Chinese).
    [24] HAN H, WU XJ, HUI RQ, XIA X, CHEN ZJ, YAO LG. Synergistic effects of Cd-loving Bacillus sp. N3 and iron oxides on immobilizing Cd and reducing wheat uptake of Cd[J]. Environmental Pollution, 2022, 305:119303.
    [25] XING YH, LIU S, TAN SX, JIANG Y, LUO XS, HAO XL, HUANG QY, CHEN WL. Core species derived from multispecies interactions facilitate the immobilization of cadmium[J]. Environmental Science and Technology, 2023, 57(12):4905-4914.
    [26] 王振德, 黄兆松, 蒋丽, 周维芝. 铁载体在假交替单胞菌Cd2+去除中的作用[J]. 山东大学学报(工学版), 2018, 48(4):122-127. WANG ZD, HUANG ZS, JIANG L, ZHOU WZ. Role of siderophore produced by Pseudoaltermonas sp. SCSE709-6 in the removal of Cd2+[J]. Journal of Shandong University (Engineering Science), 2018, 48(4):122-127(in Chinese).
    [27] 陈玲. 植物促生细菌Rhizobium sp. T1-17对蔬菜重金属消减作用的效果及其机制研究[D]. 南京:南京农业大学硕士学位论文, 2015. CHEN L. Study on the effect and mechanism of plant growth-promoting bacterium Rhizobium sp. T1-17 on reducing heavy metals in vegetables[D]. Nanjing:Master's Thesis of Nanjing Agricultural University, 2015(in Chinese).
    [28] HAN H, WU XJ, BOLAN N, KIRKHAM MB, YANG JJ, CHEN ZJ. Inhibition of cadmium uptake by wheat with urease-producing bacteria combined with sheep manure under field conditions[J]. Chemosphere, 2022, 293:133534.
    [29] 殷奥杰, 王齐, 葛淼淼, 鲁统壮, 任丽英. 微生物铁载体的应用研究进展[J].环境保护与循环经济, 2021, 41(7):20-24, 69. YIN AJ, WANG Q, GE MM, LU TZ, REN LY. Research progress on application of microbial iron carrier[J]. Liaoning Urban and Rural Environmental Science & Technology, 2021, 41(7):20-24, 69(in Chinese).
    [30] WANG Q, CHEN L, HE LY, SHENG XF. Increased biomass and reduced heavy metal accumulation of edible tissues of vegetable crops in the presence of plant growth-promoting Neorhizobium huautlense T1-17 and biochar[J]. Agriculture, Ecosystems and Environment, 2016, 228:9-18.
    [31] 覃佳名, 姜必广, 南小龙, 许瑞, 何友宇, 陈旭, 覃金宁, 杨永斌, 李骞. 重金属污染土壤微生物修复研究进展[J]. 环境科学与技术, 2021, 44(S2):132-143. QIN JM, JIANG BG, NAN XL, XU R, HE YY, CHEN X, QIN JY, YANG YB, LI Q. Advances in microbial remediation of heavy metals contaminated soil[J]. Environmental Science & Technology, 2021, 44(S2):132-143(in Chinese).
    [32] CHENG C, WANG Q, WANG QX, HE LY, SHENG XF. Wheat-associated Pseudomonas taiwanensis WRS8 reduces cadmium uptake by increasing root surface cadmium adsorption and decreasing cadmium uptake and transport related gene expression in wheat[J]. Environmental Pollution, 2021, 268:115850.
    [33] ZENG GQ, QIAO SY, WANG XT, SHENG MP, WEI MY, CHEN Q, XU H, XU F. Immobilization of cadmium by Burkholderia sp. QY14 through modified microbially induced phosphate precipitation[J]. Journal of Hazardous Materials, 2021, 412:125156.
    [34] 杜彩艳, 祖艳群, 李元. pH和有机质对土壤中镉和锌生物有效性影响研究[J]. 云南农业大学学报, 2005, 20(4):539-543. DU CY, ZU YQ, LI Y. Effect of pH and organic matter on the bioavailability Cd and Zn in soil[J]. Journal of Yunnan Agricultural University, 2005, 20(4):539-543(in Chinese).
    [35] 李晓哲, 覃善梅, 陈兆进, 张君, 姚伦广, 李娜, 庞发虎, 韩辉. 产多胺细菌调控根际细菌群落阻控小麦Cd吸收效应[J]. 环境科学, 2022, 43(2):1031-1039. LI XZ, QIN SM, CHEN ZJ, ZHANG J, YAO LG, LI N, PANG FH, HAN H. Polyamine-producing bacteria regulated the community structure of rhizosphere bacteria and reduced the absorption of Cd in wheat[J]. Environmental Science, 2022, 43(2):1031-1039(in Chinese).
    [36] MAO P, ZHUANG P, LI F, MCBRIDE MB, REN WD, LI YX, LI YW, MO H, FU HY, LI ZA. Phosphate addition diminishes the efficacy of wollastonite in decreasing Cd uptake by rice (Oryza sativa L.) in paddy soil[J]. Science of the Total Environment, 2019, 687:441-450.
    [37] HUANG B, LI ZW, HUANG JQ, GUO L, NIE XD, WANG Y, ZHANG Y, ZENG GM. Adsorption characteristics of Cu and Zn onto various size fractions of aggregates from red paddy soil[J]. Journal of Hazardous Materials, 2014, 264:176-183.
    [38] WANG XH, LIU XY, JI HK, XIA T. Poly-γ-glutamic acid-producing bacteria reduce wheat Cd uptake by promoting Cd transfer from macro-to micro-aggregates in Cd-contaminated soil[J]. Frontiers in Environmental Science, 2023, 10:1097865.
    [39] 孙雨, 常晶晶, 田春杰. 根际微生物组中细菌趋化系统的生态功能[J]. 生态学报, 2021, 41(24):9963-9969. SUN Y, CHANG JJ, TIAN CJ. Ecological functions of the bacterial chemotaxis systems in rhizosphere microbiome[J]. Acta Ecologica Sinica, 2021, 41(24):9963-9969(in Chinese).
    [40] 胡小加, 谢立华, 余常兵, 李银水, 刘胜毅, 张春雷, 廖星. 巨大芽孢杆菌A6对油菜根系分泌物所含有机酸和糖类的趋化性[J]. 中国油料作物学报, 2011, 33(4):416-419. HU XJ, XIE LH, YU CB, LI YS, LIU SY, ZHANG CL, LIAO X. Chemotaxis of Bacillus megaterium strain A6 towards organic acid and saccharide from roots exudates of rapeseed[J]. Chinese Journal of Oil Crop Sciences, 2011, 33(4):416-419(in Chinese).
    [41] KORENBLUM E, DONG YH, SZYMANSKI J, PANDA S, JOZWIAK A, MASSALHA H, MEIR S, ROGACHEV I, AHARONI A. Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(7):3874-3883.
    [42] WANG XY, CAI DB, JI MF, CHEN ZJ, YAO LG, HAN H. Isolation of heavy metal-immobilizing and plant growth-promoting bacteria and their potential in reducing Cd and Pb uptake in water spinach[J]. Science of the Total Environment, 2022, 819:153242.
    [43] WANG XH, DONG GY, LIU XW, ZHANG SK, LI C, LU XQ, XIA T. Poly-γ-glutamic acid-producing bacteria reduced Cd uptake and effected the rhizosphere microbial communities of lettuce[J]. Journal of Hazardous Materials, 2020, 398:123146.
    [44] XING YH, TAN SX, LIU S, XU SZ, WAN WJ, HUANG QY, CHEN WL. Effective immobilization of heavy metals via reactive barrier by rhizosphere bacteria and their biofilms[J]. Environmental Research, 2022, 207:112080.
    [45] LI Q, XING YN, HUANG B, CHEN X, JI L, FU XW, LI TY, WANG JN, CHEN GH, ZHANG Q. Rhizospheric mechanisms of Bacillus subtilis bioaugmentation-assisted phytostabilization of cadmium-contaminated soil[J]. Science of the Total Environment, 2022, 825:154136.
    [46] 葛占标. 产生物膜芽孢杆菌筛选及其降低叶菜Cd含量的作用和机制[D]. 南京:南京农业大学硕士学位论文, 2019. GE ZB. Screening of biofilm-producing Bacillus and its effect and mechanism of reducing Cd content in leaf vegetables[D]. Nanjing:Master's Thesis of Nanjing Agricultural University, 2019(in Chinese).
    [47] 杨露, 辛建攀, 田如男. 根际微生物对植物重金属胁迫的缓解作用及其机理研究进展[J]. 生物技术通报, 2022, 38(3):213-225. YANG L, XIN JP, TIAN RN. Research progress in the mitigative effects of rhizosphere microorganisms on heavy metal stress in plants and their mechanisms[J]. Biotechnology Bulletin, 2022, 38(3):213-225(in Chinese).
    [48] KHANNA K, JAMWAL VL, SHARMA A, GANDHI SG, OHRI P, BHARDWAJ R, AL-HUQAIL AA, SIDDIQUI MH, ALI HM, AHMAD P. Supplementation with plant growth promoting rhizobacteria (PGPR) alleviates cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites[J]. Chemosphere, 2019, 230:628-639.
    [49] SUN LN, ZHANG XH, OUANG WK, YANG ED, CAO YY, SUN RB. Lowered Cd toxicity, uptake and expression of metal transporter genes in maize plant by ACC deaminase-producing bacteria Achromobacter sp[J]. Journal of Hazardous Materials, 2022, 423:127036.
    [50] 徐炜杰, 郭佳, 赵敏, 王任远, 侯淑贞, 杨芸, 钟斌, 郭华, 刘晨, 沈颖, 柳丹. 重金属污染土壤植物根系分泌物研究进展[J]. 浙江农林大学学报, 2017, 34(6):1137-1148. XU WJ, GUO J, ZHAO M, WANG RY, HOU SZ, YANG Y, ZHONG B, GUO H, LIU C, SHEN Y, LIU D. Research progress of soil plant root exudates in heavy metal contaminated soil[J]. Journal of Zhejiang A&F University, 2017, 34(6):1137-1148(in Chinese).
    [51] 蔡莹, 于晓菲. 植物根系分泌物的生态效应研究[J].环境生态学, 2022(9):9-16. CAI Y, YU XF. Study on the ecological effects of plant root exudates[J]. Environmental Ecology, 2022(9):9-16(in Chinese).
    [52] 傅晓萍, 豆长明, 胡少平, 陈新才, 施积炎, 陈英旭. 有机酸在植物对重金属耐性和解毒机制中的作用[J]. 植物生态学报, 2010, 34(11):1354-1358. FU XP, DOU CM, HU SP, CHEN XC, SHI JY, CHEN YX. A review of progress in roles of organic acids on heavy metal resistance and detoxification in plants[J]. Chinese Journal of Plant Ecology, 2010, 34(11):1354-1358(in Chinese).
    [53] 李小平, 刘献宇, 徐长林, 赵亚楠, 吴婷, 刘东英, 杨涛, YU HT. 河谷型城市土壤有害金属有机酸与细菌淋溶特性[J]. 环境科学学报, 2016, 36(11):4153-4163. LI XP, LIU (S/X)Y, XU CL, ZHAO YN, WU T, LIU DY, YANG T, YU HT. Leaching characteristic of toxic metals in urban soil from valley city by organic acid and soil bacterial[J]. Acta Scientiae Circumstantiae, 2016, 36(11):4153-4163(in Chinese).
    [54] 何沅洁. 三峡库区消落带优势植物根系低分子量有机酸对土壤铅影响的模拟研究[D]. 重庆:西南大学硕士学位论文, 2017. HE YJ. Simulation study on the effect of low molecular weight organic acids in the roots of dominant plants on soil lead in the water-level fluctuation zone of the Three Gorges Reservoir area[D]. Chongqing:Master's Thesis of Southwest University, 2017(in Chinese).
    [55] GUO TR, ZHANG GP, ZHOU MX, WU FB, CHEN JX. Influence of aluminum and cadmium stresses on mineral nutrition and root exudates in two barley cultivars*[J]. Pedosphere, 2007, 17(4):505-512.
    [56] QIN L, LI ZR, LI B, WANG JX, ZU YQ, JIANG M, LI Y. Organic acid excretion in root exudates as a mechanism of cadmium uptake in a Sonchus asper-Zea mays intercropping system[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(6):1059-1064.
    [57] 杨云鹤. 改性纳米零价铁修复镉污染的土壤:植物根系分泌物的作用及其内部反应机制[D]. 长沙:湖南大学硕士学位论文, 2021. YANG YH. Remediation of cadmium contaminated soil by modified nano-zero-valent iron:effects of plant root exudates and their internal reaction mechanisms[D]. Changsha:Master's Thesis of Hunan University, 2021(in Chinese).
    [58] LENG ZR, WU YM, LI J, NIE ZY, JIA H, YAN CL, HONG HL, WANG XH, DU DL. Phenolic root exudates enhance Avicennia marina tolerance to cadmium under the mediation of functional bacteria in mangrove sediments[J]. Marine Pollution Bulletin, 2022, 185:114227.
    [59] BULGARELLI D, SCHLAEPPI K, SPAEPEN S, van THEMAAT EVL, SCHULZE-LEFERT P. Structure and functions of the bacterial microbiota of plants[J]. Annual Review of Plant Biology, 2013, 64:807-838.
    [60] 袁仁文, 刘琳, 张蕊, 范淑英. 植物根际分泌物与土壤微生物互作关系的机制研究进展[J]. 中国农学通报, 2020, 36(2):26-35. YUAN RW, LIU L, ZHANG R, FAN SY. The interaction mechanism between plant rhizosphere secretion and soil microbe:a review[J]. Chinese Agricultural Science Bulletin, 2020, 36(2):26-35(in Chinese).
    [61] SEGURA A, RODRÍGUEZ-CONDE S, RAMOS C, RAMOS JL. Bacterial responses and interactions with plants during rhizoremediation[J]. Microbial Biotechnology, 2009, 2(4):452-464.
    [62] XU ZH, LIU YP, ZHANG N, XUN WB, FENG HC, MIAO YZ, SHAO JH, SHEN QR, ZHANG RF. Chemical communication in plant-microbe beneficial interactions:a toolbox for precise management of beneficial microbes[J]. Current Opinion in Microbiology, 2023, 72:102269.
    [63] KLOEPPER JW, SCHROTH MN. Relationship of in vitro antibiosis of plant growth-promoting rhizobacteria to plant growth and the displacement of root microflora[J]. Phytopathology, 1981, 71(10):1020.
    [64] 王亚, 冯发运, 葛静, 李勇, 余向阳. 植物根系分泌物对土壤污染修复的作用及影响机理[J]. 生态学报, 2022, 42(3):829-842. WANG Y, FENG FY, GE J, LI Y, YU XY. Effects and mechanisms of plant root exudates on soil remediation[J]. Acta Ecologica Sinica, 2022, 42(3):829-842(in Chinese).
    [65] KOZDRÓJ J, van ELSAS JD. Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches[J]. Soil Biology and Biochemistry, 2000, 32(10):1405-1417.
    [66] 施积炎, 陈英旭, 林琦, 王远鹏. 根分泌物与微生物对污染土壤重金属活性的影响[J]. 中国环境科学, 2004, 24(3):316-319. SHI JY, CHEN YX, LIN Q, WANG YP. The influence of root exudates and microbe on heavy metal activity in contaminated soil[J]. China Environmental Science, 2004, 24(3):316-319(in Chinese).
    [67] LIU AR, WANG WJ, ZHENG XY, CHEN XC, FU WT, WANG G, JI J, JIN C, GUAN CF. Improvement of the Cd and Zn phytoremediation efficiency of rice (Oryza sativa) through the inoculation of a metal-resistant PGPR strain[J]. Chemosphere, 2022, 302:134900.
    [68] JU, WL, LIU L, FANG LC, CUI YX, DUAN CJ, WU H. Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil[J]. Ecotoxicology and Environmental Safety, 2019, 167:218-226.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘娴,季翠,高蓉蓉,邓雪婷,何琳燕. 基于菌植互作的植物根际细菌钝化镉作用和机制研究进展[J]. 微生物学通报, 2023, 50(10): 4598-4610

复制
分享
文章指标
  • 点击次数:195
  • 下载次数: 838
  • HTML阅读次数: 517
  • 引用次数: 0
历史
  • 收稿日期:2023-04-07
  • 录用日期:2023-05-13
  • 在线发布日期: 2023-10-07
  • 出版日期: 2023-10-20
文章二维码