科微学术

微生物学通报

大麻素前体物2,4-二羟基-6-正庚基苯甲酸的生物合成及产量优化
作者:
作者单位:

苏州科技大学化学与生命科学学院, 江苏  苏州    215009

基金项目:

江苏省自然科学基金青年基金(BK20210864);苏州科技大学自然科学类校级科研基金(国家自然科学基金培育项目) (XKZ2020005)


Biosynthesis and yield improvement of cannabinoid precursor sphaerophorolcarboxylic acid
Author:
Affiliation:

School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China

Fund Project:

This work was supported by the Natural Science Foundation of Jiangsu Province Youth Fund (BK20210864) and the Natural Science Foundation of Suzhou University of Science and Technology (National Natural Science Foundation of China Cultivation Project) (XKZ2020005)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    背景 大麻素是植物的天然活性产物,是一种重要的临床药物。目前药学相关大麻素的生产仍然依赖植物,但植物生产效率低、周期长并且受安全等因素限制。利用生物方法合成大麻素及其类似物具有重要意义。 目的 在酿酒酵母(Saccharomyces cerevisiae) BJ5464-npgA中重构大麻素前体物2,4-二羟基-6-正庚基苯甲酸(sphaerophorolcarboxylic acid, SA)的生物合成途径,优化发酵培养基组分,利用生物合成途径高效生产SA。 方法 从罗伯茨绿僵菌(Matarhizium robertsii) ARSEF 23基因组扩增Mr_OvaAMr_OvaBMr_OvaC基因,分别构建到不同酵母-大肠杆菌穿梭质粒中,共同转化酿酒酵母BJ5464-npgA表达,获得酵母工程菌株CLB2。通过单因素试验及Plackett-Burman、最陡爬坡试验和响应面法设计优化发酵培养基,使用Design Expert 8.0对试验数据进行分析。 结果 酵母工程菌株CLB2可以合成63.75 mg/L SA。培养基各成分中影响SA产量的3个主要因素为:蔗糖、KH2PO4和维生素溶液,其最佳浓度分别为蔗糖7.26 g/L、KH2PO4·7H2O 6.08 g/L、维生素溶液5.67 mL/L,预测产量最大值为93.15 mg/L,实际产量为93.75 mg/L,较优化前提高了47%。 结论 大麻素前体物SA可以在酿酒酵母中高效合成。试验获得的高产发酵培养基配方为后续SA及大麻素的研究提供了可靠的支持。

    Abstract:

    Background Cannabinoids are natural active products of plants that serve as key clinical drugs. At present, the production of pharmaceutical cannabinoids still relies on plants, which has low yield, long cycles, and safety problems. Biosynthesis is of great significance to the production of cannabinoids and their analogues. Objective To reconstruct the biosynthetic pathway of the cannabinoid precursor sphaerophorolcarboxylic acid (SA) in Saccharomyces cerevisiae BJ5464-npgA and optimize the fermentation medium to increase the yield of SA. Methods Mr_OvaA, Mr_OvaB, and Mr_OvaC were amplified by PCR with the genomic DNA of Matarhizium robertsii ARSEF 23 as the template and respectively integrated into S. cerevisiae-Escherichia coli shuttle plasmids. All the three recombinant plasmids were transformed into S. cerevisiae BJ5464-npgA and the engineered strain CLB2 was obtained. Single factor experiments, Plackett-Burman design, method of steepest ascent, and response surface method were employed to optimize the fermentation medium. The experimental data were analyzed in Design Expert 8.0. Results The S. cerevisiae engineered strain CLB2 yielded 63.75 mg/L SA. The three main factors affecting SA yield were sucrose, KH2PO4, and vitamin solution. The optimized medium was composed of 7.26 g/L sucrose, 6.08 g/L KH2PO4·7H2O, 5.67 mL/L vitamin solution, in which the predicted SA yield was 93.15 mg/L. The actual yield of SA in the optimized medium was 93.75 mg/L, which was 47% higher than that before optimization. Conclusion Cannabinoid precursor SA can be synthesized efficiently in S. cerevisiae. The fermentation medium formula for high production of SA in this study provides reliable support for the subsequent research on SA and cannabinoid.

    参考文献
    [1] RUSSO EB. Beyond Cannabis: plants and the endocannabinoid system[J]. Trends in Pharmacological Sciences, 2016, 37(7): 594-605.
    [2] RUSSO EB. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects[J]. British Journal of Pharmacology, 2011, 163(7): 1344-1364.
    [3] J?RVINEN T, PATE DW, LAINE K. Cannabinoids in the treatment of glaucoma[J]. Pharmacology & Therapeutics, 2002, 95(2): 203-220.
    [4] ANDRE CM, HAUSMAN JF, GUERRIERO G. Cannabis sativa: the plant of the thousand and one molecules[J]. Frontiers in Plant Science, 2016, 7: 19.
    [5] LIU XN, DING WT, JIANG HF. Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production[J]. Microbial Cell Factories, 2017, 16(1): 125.
    [6] GüLCK T, BOOTH JK, CARVALHO, KHAKIMOV B, CROCOLL C, MOTAWIA MS, M?LLER BL, BOHLMANN J, GALLAGE NJ. Synthetic biology of cannabinoids and cannabinoid glucosides in Nicotiana benthamiana and Saccharomyces cerevisiae[J]. Journal of Natural Products, 2020, 83(10): 2877-2893.
    [7] ISMED F, FARHAN A, BAKHTIAR A, ZAINI E, NUGRAHA YP, DWICHANDRA PUTRA O, UEKUSA H. Crystal structure of olivetolic acid: a natural product from Cetrelia sanguinea (Schaer.)[J]. Acta Crystallographica Section E, Crystallographic Communications, 2016, 72(Pt 11): 1587-1589.
    [8] GAGNE SJ, STOUT JM, LIU EW, BOUBAKIR Z, CLARK SM, PAGE JE. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(31): 12811-12816.
    [9] TAN ZG, CLOMBURG JM, GONZALEZ R. Synthetic pathway for the production of olivetolic acid in Escherichia coli[J]. ACS Synthetic Biology, 2018, 7(8): 1886-1896.
    [10] LUO XZ, REITER MA, D'ESPAUX L, WONG J, DENBY CM, LECHNER A, ZHANG YF, GRZYBOWSKI AT, HARTH S, LIN WY, LEE H, YU CH, SHIN J, DENG K, BENITES VT, WANG G, BAIDOO EEK, CHEN Y, DEV I, PETZOLD CJ, KEASLING JD. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast[J]. Nature, 2019, 567(7746): 123-126.
    [11] SHI B, MA T, YE ZL, LI XW, HUANG YL, ZHOU ZY, DING YK, DENG ZX, LIU TG. Systematic metabolic engineering of Saccharomyces cerevisiae for lycopene overproduction[J]. Journal of Agricultural and Food Chemistry, 2019, 67(40): 11148-11157.
    [12] OKORAFOR IC, CHEN MB, TANG Y. High-titer production of olivetolic acid and analogs in engineered fungal host using a nonplant biosynthetic pathway[J]. ACS Synthetic Biology, 2021, 10(9): 2159-2166.
    [13] RUIZ B, CHáVEZ A, FORERO A, GARCíA-HUANTE Y, ROMERO A, SáNCHEZ M, ROCHA D, SáNCHEZ B, RODRíGUEZ-SANOJA R, SáNCHEZ S, LANGLEY E. Production of microbial secondary metabolites: regulation by the carbon source[J]. Critical Reviews in Microbiology, 2010, 36(2): 146-167.
    [14] JONES TH, BRUNNER SR, EDWARDS AA, DAVIDSON DW, SNELLING RR. 6-alkylsalicylic acids and 6-alkylresorcylic acids from ants in the genus Crematogaster from Brunei[J]. Journal of Chemical Ecology, 2005, 31(2): 407-417.
    [15] DASHKO S, ZHOU N, COMPAGNO C, PI?KUR J. Why, when, and how did yeast evolve alcoholic fermentation?[J]. FEMS Yeast Research, 2014, 14(6): 826-832.
    [16] ALBERS E, LARSSON C, LIDéN G, NIKLASSON C, GUSTAFSSON L. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation[J]. Applied and Environmental Microbiology, 1996, 62(9): 3187-3195.
    [17] ZHAO JZ, BAO XM, LI C, SHEN Y, HOU J. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 2016, 100(10): 4561-4571.
    [18] PéREZ-RODRíGUEZ N, OLIVEIRA F, PéREZ-BIBBINS B, BELO I, DOMíNGUEZ JM. Optimization of xylanase production by filamentous fungi in solid-state fermentation and scale-up to horizontal tube bioreactor[J]. Applied Biochemistry and Biotechnology, 2014, 173(3): 803-825.
    [19] van HOEK P, de HULSTER E, van DIJKEN JP, PRONK JT. Fermentative capacity in high-cell-density fed-batch cultures of baker's yeast[J]. Biotechnology and Bioengineering, 2000, 68(5): 517-523.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

裴俊伟,魏阳,邱娇,孙贤赵,王华峰,纪丽莲,白净. 大麻素前体物2,4-二羟基-6-正庚基苯甲酸的生物合成及产量优化[J]. 微生物学通报, 2023, 50(10): 4568-4582

复制
分享
文章指标
  • 点击次数:234
  • 下载次数: 742
  • HTML阅读次数: 899
  • 引用次数: 0
历史
  • 收稿日期:2023-02-24
  • 录用日期:2023-04-07
  • 在线发布日期: 2023-10-27
  • 出版日期: 2023-10-20
文章二维码