科微学术

微生物学通报

丁酸梭菌发酵培养基的优化及发酵产物对黄曲霉毒素B1的降解
作者:
基金项目:

辽宁省教育厅高校基本科研项目(LJKZZ20220060)


Fermentation medium optimization of Clostridium butyricum and degradation of aflatoxin B1 by fermentation products
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】丁酸梭菌是专性厌氧的新一代芽孢益生菌,耐热、耐酸、抗逆性强,极具应用价值和开发前景。【目的】优化丁酸梭菌发酵培养基并初步研究其发酵液对黄曲霉菌的抑制作用和降解黄曲霉毒素B1 (aflatoxin B1, AFB1)的能力。【方法】利用响应面法对发酵培养基进行优化,采用牛津杯法对丁酸梭菌发酵液抑制黄曲霉菌生长进行研究,并通过酶联免疫法测定发酵液对AFB1的降解能力。【结果】优化后的发酵培养基为:葡萄糖18.1 g/L,大豆蛋白胨29.7 g/L,磷酸氢二钾3.8 g/L,氯化钠2.0 g/L,乙酸钠4.0 g/L,结晶硫酸镁1.2 g/L,l-半胱氨酸盐酸盐0.3 g/L。优化后的丁酸梭菌生物量由8.99×108个/mL提高至2.28×109个/mL,是优化前的2.54倍。丁酸梭菌发酵液对致病真菌黄曲霉菌的抑菌效果十分显著,其上清液经浓缩后对AFB1降解72 h的降解率达到68.65%,初步分析表明上清液中对AFB1具有脱毒作用的活性组分为丁酸梭菌分泌产生的胞外酶。【结论】本研究通过发酵培养基优化明显提高了丁酸梭菌的生物量,并将其应用于抑制黄曲霉菌的生长与降解AFB1,为丁酸梭菌的规模化生产及其微生态制剂的开发应用提供了科学依据。

    Abstract:

    [Background] Clostridium butyricum is a new generation of obligate anaerobic spore-producing probiotics with strong tolerance to heat, acid, and stress, demonstrating a great application value and development prospect. [Objective] To optimize the fermentation medium of C. butyricum and study the activities of the fermentation broth in terms of inhibiting Aspergillus flavus and degrading aflatoxin B1 (AFB1). [Methods] Response surface methodology was employed to optimize the fermentation medium. The oxford cup assay was employed to examine the inhibitory activity of C. butyricum fermentation broth on A. flavus and enzyme-linked immunosorbent assay to determine the AFB1-degrading ability of the fermentation broth. [Results] The optimized fermentation medium was composed of 18.1 g/L glucose, 29.7 g/L soya peptone, 3.8 g/L K2HPO4· 3H2O, 2.0 g/L NaCl, 4.0 g/L NaAc, 1.2 g/L MgSO4· 7H2O, and 0.3 g/L l-cystine hydrochloride. After optimization, the biomass of C. butyricum reached 2.28×109 cells/mL, which was 2.54 times of that (8.99×108 cells/mL) before optimization. The fermentation broth of C. butyricum exerted a significant inhibitory effect on A. flavus, and the concentrated supernatant degraded 68.65% of AFB1 within 72 h. The results indicated that the active components degrading AFB1 in the supernatant were the extracellular enzymes produced by C. butyricum.[Conclusion] The biomass of C. butyricum was significantly increased by fermentation medium optimization, and the fermentation broth of C. butyricum inhibited A. flavus and degraded AFB1. The findings provide scientific evidence for the industrial production of C. butyricum and the development and application of microecological preparations.

    参考文献
    [1] 傅云扉, 魏琦麟, 袁明贵, 康桦华, 田雅, 向蓉, 徐志宏. 丁酸梭菌及产丁酸代谢改造[J].中国生物工程杂志, 2022, 42(1/2):37-45. FU YF, WEI QL, YUAN MG, KANG HH, TIAN Y, XIANG R, XU ZH. Research progress of Clostridium butyricum and metabolic modification of butyric acid production[J]. China Biotechnology, 2022, 42(1/2):37-45(in Chinese).
    [2] TANASUPAWAT S, PRASIRTSAK B, PAKDEETO A, THONGCHUL N. Characterization and fermentation products of Clostridium butyricum strains isolated from Thai soils[J]. Journal of Applied Pharmaceutical Science, 2014, 4(4):20-23.
    [3] ARIYOSHI T, HAGIHARA M, TAKAHASHI M, MIKAMO H. Effect of Clostridium butyricum on gastrointestinal infections[J]. Biomedicines, 2022, 10(2):483.
    [4] STOEVA MK, GARCIA-SO J, JUSTICE N, MYERS J, TYAGI S, NEMCHEK M, MCMURDIE PJ, KOLTERMAN O, EID J. Butyrate-producing human gut symbiont, Clostridium butyricum, and its role in health and disease[J]. Gut Microbes, 2021, 13(1):1-28.
    [5] KOH A, de VADDER F, KOVATCHEVA-DATCHARY P, BÄCKHED F. From dietary fiber to host physiology:short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6):1332-1345.
    [6] LI YH, WANG Y, LIU YY, LI X, FENG LF, LI KK. Optimization of an economical medium composition for the coculture of Clostridium butyricum and Bacillus coagulans[J]. AMB Express, 2022, 12(1):19.
    [7] WANG Y, ZHAO CX, ZHANG DD, ZHAO MM, ZHENG D, PENG MM, CHENG W, GUO P, CUI ZJ. Simultaneous degradation of aflatoxin B1 and zearalenone by a microbial consortium[J]. Toxicon:Official Journal of the International Society on Toxinology, 2018, 146:69-76.
    [8] CHEN GJ, FANG QA, LIAO ZL, XU CW, LIANG ZB, LIU T, ZHONG QP, WANG L, FANG X, WANG J. Detoxification of aflatoxin B1 by a potential probiotic Bacillus amyloliquefaciens WF2020[J]. Frontiers in Microbiology, 2022, 13:891091.
    [9] XU L, EISA AHMED MF, SANGARE L, ZHAO YJ, SELVARAJ JN, XING FG, WANG Y, YANG HP, LIU Y. Novel aflatoxin-degrading enzyme from Bacillus shackletonii L7[J]. Toxins, 2017, 9(1):36.
    [10] RAO KR, VIPIN AV, HARIPRASAD P, APPAIAH KAA, VENKATESWARAN G. Biological detoxification of aflatoxin B1 by Bacillus licheniformis CFR1[J]. Food Control, 2017, 71:234-241.
    [11] XIA XS, ZHANG Y, LI MY, GARBA B, ZHANG Q, WANG Y, ZHANG HY, LI PW. Isolation and characterization of a Bacillus subtilis strain with aflatoxin B1 biodegradation capability[J]. Food Control, 2017, 75:92-98.
    [12] ALBERTS JF, ENGELBRECHT Y, STEYN PS, HOLZAPFEL WH, van ZYL WH. Biological degradation of aflatoxin B1 by Rhodococcus erythropolis cultures[J]. International Journal of Food Microbiology, 2006, 109(1/2):121-126.
    [13] BELWAL T, BHATT ID, RAWAL RS, PANDE V. Microwave-assisted extraction (MAE) conditions using polynomial design for improving antioxidant phytochemicals in Berberis asiatica Roxb. ex DC. leaves[J]. Industrial Crops and Products, 2017, 95:393-403.
    [14] WANG L, HUANG W, SHA Y, YIN HC, LIANG Y, WANG X, SHEN Y, WU XQ, WU DP, WANG JS. Co-cultivation of two Bacillus strains for improved cell growth and enzyme production to enhance the degradation of aflatoxin B1[J]. Toxins, 2021, 13(7):435.
    [15] 刘磊, 田亚男, 倪学勤, 曾东, 潘康成, 王鹤松. 丁酸梭菌CBM01的碳、氮源优化及其对胃肠道耐受性的研究[J]. 动物营养学报, 2017, 29(10):3831-3836. LIU L, TIAN YN, NI XQ, ZENG D, PAN KC, WANG HS. Optimization of carbon and nitrogen sources of Clostridium butyricum CBM01 and its tolerance to gastrointerestinal tract[J]. Chinese Journal of Animal Nutrition, 2017, 29(10):3831-3836(in Chinese).
    [16] 李雯静, 李则静, 田中元, 肖运才, 王喜亮, 彭健, 毕丁仁, 石德时. 羊源丁酸梭菌HDRyYB1发酵工艺的优化[J]. 微生物学通报, 2016, 43(3):534-540. LI WJ, LI ZJ, TIAN ZY, XIAO YC, WANG XL, PENG J, BI DR, SHI DS. Fermentation optimization of Clostridium butyricum HDRyYB1 isolated from sheep[J]. Microbiology China, 2016, 43(3):534-540(in Chinese).
    [17] CHEN DF, JIN DC, HUANG SM, WU JY, XU MQ, LIU TY, DONG WX, LIU X, WANG SN, ZHONG WL, LIU Y, JIANG RH, PIAO MY, WANG BM, CAO HL. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota[J]. Cancer Letters, 2020, 469:456-467.
    [18] RUSHING BR, SELIM MI. Aflatoxin B1:a review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods[J]. Food and Chemical Toxicology, 2019, 124:81-100.
    [19] CHEN YJ, KONG Q, LIANG Y. Three newly identified peptides from Bacillus megaterium strongly inhibit the growth and aflatoxin B1 production of Aspergillus flavus[J]. Food Control, 2019, 95:41-49.
    [20] 蔡俊, 田尔诺, 邵帅, 杜馨, 王常高, 林建国. 黄曲霉毒素B1生物脱毒的研究进展[J]. 微生物学通报, 2017, 44(3):726-731. CAI J, TIAN EN, SHAO S, DU X, WANG CG, LIN JG. Progress in biological detoxification of aflatoxin B1[J]. Microbiology China, 2017, 44(3):726-731(in Chinese).
    [21] VERHEECKE C, LIBOZ T, MATHIEU F. Microbial degradation of aflatoxin B1:current status and future advances[J]. International Journal of Food Microbiology, 2016, 237:1-9.
    [22] 宋茂鹏, 马现永, 邓盾, 王永飞. 假单胞菌胞外酶降解黄曲霉毒素B1的酶学性质[J]. 微生物学通报, 2021, 48(1):46-56. SONG MP, MA XY, DENG D, WANG YF. Characterization of an extracellular aflatoxin B1 degrading enzyme from a Pseudomonas strain[J]. Microbiology China, 2021, 48(1):46-56(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘亚妹,丛丽娜,陈明. 丁酸梭菌发酵培养基的优化及发酵产物对黄曲霉毒素B1的降解[J]. 微生物学通报, 2023, 50(10): 4533-4543

复制
分享
文章指标
  • 点击次数:250
  • 下载次数: 972
  • HTML阅读次数: 696
  • 引用次数: 0
历史
  • 收稿日期:2023-02-09
  • 录用日期:2023-04-05
  • 在线发布日期: 2023-10-07
  • 出版日期: 2023-10-20
文章二维码