科微学术

微生物学通报

花生根际微生物的分离及高效功能菌株筛选
作者:
基金项目:

山东省自然科学基金(ZR202102280248,2020MC043);江苏省自然科学基金(BK20210144)


Isolation and efficient strain screening of microorganisms from peanut rhizosphere
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】花生根际分布着丰富的微生物类群,分离筛选多种功能的高效微生物是研发高效复合菌肥的基础。【目的】从花生根际土壤及根表分离微生物,分析可培养微生物的多样性,筛选高效解有机磷和无机磷、产吲哚乙酸(indole-3-acetic acid, IAA)和铁载体功能的菌株,为研发花生微生物菌肥打下基础。【方法】利用稀释涂布法,从采自山东省栖霞市、平度市、烟台市莱山区 3个样点的花生根际土、根表样品中分离微生物,基于16S rRNA基因序列对其进行系统发育分析,并通过初筛和复筛筛选高效解磷、产IAA和铁载体的菌株。【结果】共分离、纯化、保藏147株菌,其中75株分离自根际土壤,72株分离自根表样品。系统发育分析表明所有的菌分布于放线菌门(Actinomycetota)、芽孢杆菌门(Bacillota)、拟杆菌门(Bacteroidota)和假单胞菌门(Pseudomonadota)这4个门的40个属,优势属为链霉菌属(Streptomyces, 21.77%)、芽孢杆菌属(Bacillus, 16.33%);根表样品微生物的多样性高于根际样品;共筛选到解有机磷菌株62株,短波单胞菌(Brevundimonas) YTU21021解有机磷能力最强为1.12 mg/L;解无机磷菌株31株,不动杆菌(Acinetobacter) YTU21009解无机磷能力最强为7.04 mg/L;产IAA的菌株63株,肠杆菌(Enterobacter) YTU21054产IAA量最高,达184.19 mg/L;产铁载体细菌7株,伯克氏菌(Burkholderia) YTU21051产铁载体能力最强,As/Ar为0.90。【结论】花生根际和根表样品中可培养微生物多样性较为丰富,本研究筛选到的高效功能菌丰富了花生根际功能微生物资源,为后续与高效根瘤菌联合研发花生复合微生物菌肥奠定了基础。

    Abstract:

    [Background] The rhizosphere soil harbors diverse microorganisms. The isolation and screening of efficient strains with different functions is the premise for the development of efficient composite microbial fertilizers. [Objective] To isolate microorganisms from the rhizosphere soil and root surface of peanut and screen out efficient strains with organic and inorganic phosphorus-solubilizing, indole-3-acetic acid (IAA)-producing, and siderophore-producing functions, so as to lay a foundation for the research and development of microbial fertilizers for peanut. [Methods] The dilution-plate coating method was employed to isolate the microorganisms from the peanut rhizosphere soil and root surface samples collected from Qixia City, Pingdu City, and Laishan district of Yantai City in Shandong Province. The microorganisms were identified by the phylogenetic analysis based on the 16S rRNA gene sequences. The strains with efficient organic and inorganic phosphorus-solubilizing, IAA-producing, and siderophore-producing functions were obtained through primary and secondary screening. [Results] A total of 147 strains were isolated, purified, and preserved in this study, including 75 strains isolated from the rhizosphere soil samples and 72 strains from the root surface samples. The isolates belonged to 40 genera of 4 phyla including Actinomycetota, Bacillota, Bacteroidota, and Pseudomonadota. Streptomyces (21.77%) and Bacillus (16.33%) were the dominant genera. The root surface samples had higher alpha diversity of microbial community than the rhizosphere samples. Among the 62 strains with organic phosphorus-solubilizing ability, Brevundimonas sp. YTU21021 showed the highest activity of 1.12 mg/L. Among the 31 strains with inorganic phosphorus-solubilizing ability, Acinetobacter sp. YTU21009 showed the highest activity of 7.04 mg/L. Among the 63 strains that could produce IAA, Enterobacter sp. YTU21054 showed the highest yield of 184.19 mg/L. Among the 7 strains capable of producing siderophores, Burkholderia sp. YTU21051 presented the highest efficiency with the As/Ar ratio of 0.9. [Conclusion] There are diverse culturable microorganisms in the rhizosphere and root surface samples of peanut. The efficient functional strains obtained in this study enrich the functional microbial resources in peanut rhizosphere and lay a foundation for the development of composite microbial fertilizers with efficient rhizobia for peanut.

    参考文献
    [1] COLLAVINO MM, SANSBERRO PA, MROGINSKI LA, MARIO AGUILAR O. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth[J]. Biology and Fertility of Soils, 2010, 46(7):727-738.
    [2] 张立伟, 王辽卫. 我国花生产业发展状况、存在问题及政策建议[J]. 中国油脂, 2020, 45(11):116-122. ZHANG LW, WANG LW. Development status, existing problems and policy recommendations of peanut industry in China[J]. China Oils and Fats, 2020, 45(11):116-122(in Chinese).
    [3] 杨吉顺, 李尚霞, 吴菊香, 张智猛, 樊宏. 控释肥对花生产量及干物质积累的影响[J]. 山东农业科学, 2013, 45(10):98-100, 107. YANG JS, LI SX, WU JX, ZHANG ZM, FAN H. Effects of controlled-release fertilizer on peanut yield and dry matter accumulation[J]. Shandong Agricultural Sciences, 2013, 45(10):98-100, 107(in Chinese).
    [4] BHATTARAI B. Variation of soil microbial population in different soil horizons[J]. Journal of Microbiology and Experimentation, 2015, 2(2):75-78.
    [5] MARSCHNER H. Mineral Nutrition of Higher Plants[M]. Second Ed. New York, NY:Academic Press, 2014.
    [6] MENDES R, GARBEVA P, RAAIJMAKERS JM. The rhizosphere microbiome:significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms[J]. FEMS Microbiology Reviews, 2013, 37(5):634-663.
    [7] VIVES-PERIS V, OLLAS C, GÓMEZ-CADENAS A, PÉREZ-CLEMENTE RM. Root exudates:from plant to rhizosphere and beyond[J]. Plant Cell Reports, 2020, 39(1):3-17.
    [8] KNIGHT R, VRBANAC A, TAYLOR BC, AKSENOV A, CALLEWAERT C, DEBELIUS J, GONZALEZ A, KOSCIOLEK T, MCCALL LI, MCDONALD D, MELNIK AV, MORTON JT, NAVAS J, QUINN RA, SANDERS JG, SWAFFORD AD, THOMPSON LR, TRIPATHI A, XU ZZ, ZANEVELD JR, ZHU QY, CAPORASO JG, DORRESTEIN PC. Best practices for analysing microbiomes[J]. Nature Reviews Microbiology, 2018, 16(7):410-422.
    [9] SAHARAN B, NEHRA V. Plant growth promoting rhizobacteria:a critical review[J]. Life Sciences and Medicine Research, 2011, 2(1):1-30.
    [10] HU J, WEI Z, FRIMAN VP, GU SH, WANG XF, EISENHAUER N, YANG TJ, MA J, SHEN QR, XU YC, JOUSSET A. Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression[J]. mBio, 2016, 7(6):e01790-16.
    [11] SHAO S, CHEN MN, LIU W, HU XK, WANG ET, YU SL, LI Y. Long-term monoculture reduces the symbiotic rhizobial biodiversity of peanut[J]. Systematic and Applied Microbiology, 2020, 43(5):126101.
    [12] GUIMARÃES SL, BONFIM-SILVA EM, de SOUZA ACP, SIMEON BG. Efficiency of inoculation with Rhizobium in peanuts (Arachis hypogaea L.) grown in Brazilian cerrado soil[J]. Agricultural Sciences, 2019, 10(7):948-956.
    [13] 姜焕焕, 祁佩时, 王通, 迟晓元, 陈明娜. 花生根际多功能固氮菌的分离及其耐盐碱特性研究[J]. 生物技术通报, 2019, 35(3):24-30. JIANG HH, QI PS, WANG T, CHI XY, CHEN MN. Screening of multi-function nitrogen-fixing bacteria in peanut rhizosphere and their tolerances to saline[J]. Biotechnology Bulletin, 2019, 35(3):24-30(in Chinese).
    [14] 韩丽珍, 刘畅, 周静. 接种促生菌对花生根际土壤微生物及营养元素的影响[J]. 基因组学与应用生物学, 2019, 38(7):3065-3073. HAN LZ, LIU C, ZHOU J. Effects of inoculation with growth-promoting bacteria on peanut rhizosphere soil microorganism and nutrient elements[J]. China Industrial Economics, 2019, 38(7):3065-3073(in Chinese).
    [15] 朱金霞, 周文生, 李苗, 郑国保. 木质素快速降解细菌的初筛及相关酶活力变化规律研究[J]. 宁夏农林科技, 2021, 62(7):32-36, F0002. ZHU JX, ZHOU WS, LI M, ZHENG GB. Selection of bacteria of lignin-degrading rapidly and changes of related enzyme activities[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2021, 62(7):32-36, F0002(in Chinese).
    [16] 徐明韬. 香烟烟雾提取物对铜绿假单胞菌毒力及耐药性的作用及其机制研究[D]. 沈阳:中国医科大学博士学位论文, 2020. XU MT. Study on the toxicity and drug resistance of cigarette smoke extract to Pseudomonas aeruginosa and its mechanism[D]. Shenyang:Doctoral Dissertation of China Medical University, 2020(in Chinese).
    [17] 赵君, 饶惠玲, 王耘籽, 黄伟, 吴承祯, 李键. 红壤区杉木根际高效解磷菌的筛选、鉴定及培养条件优化[J]. 厦门大学学报(自然科学版), 2022, 61(1):112-121. ZHAO J, RAO HL, WANG YZ, HUANG W, WU CZ, LI J. Screening, identification and optimization of culture conditions of two high-efficiency phosphorus-solubilizing bacteria in the rhizosphere of Cunninghamia lanceolata in red soil areas[J]. Journal of Xiamen University (Natural Science Edition), 2022, 61(1):112-121(in Chinese).
    [18] 沈佳佳, 侯小改, 王二强, 王菲, 郭丽丽. 油用牡丹根际解有机磷细菌的筛选及解磷功能研究[J]. 生物技术通报, 2022, 38(6):157-165. SHEN JJ, HOU XG, WANG EQ, WANG F, GUO LL. Organic phosphate-solubilizing bacteria screening in the rhizosphere of Paeonia ostii and study on their phosphate-solubilizing capabilities[J]. Biotechnology Bulletin, 2022, 38(6):157-165(in Chinese).
    [19] 孟建宇, 李蘅, 杨鸿儒, 贾丽娟. 内蒙古荒漠灌木根际解磷菌多样性及其解磷和产铁载体能力[J]. 环境科学研究, 2021, 34(11):2714-2721. MENG JY, LI H, YANG HR, JIA LJ. Diversity of phosphorus-solubilizing bacteria in rhizosphere of desert shrubs in Inner Mongolia and their phosphorus-solubilizing and siderophore-producing capabilities[J]. Research of Environmental Sciences, 2021, 34(11):2714-2721(in Chinese).
    [20] 王卫星, 周晓伦, 李忠玲, 王明鹏, 王卫卫. CAS平板覆盖法检测氢氧化细菌铁载体[J].微生物学通报, 2014, 41(8):1692-1697. WANG WX, ZHOU XL, LI ZL, WANG MP, WANG WW. Detection of siderophore production from hydrogen-oxidizing bacteria with CAS overlay plate method[J]. Microbiology China, 2014, 41(8):1692-1697(in Chinese).
    [21] 董国菊. 荧光假单胞菌Pseudomonas fluorescens P-72-10菌株对烟草黑胫病的生防机理研究[D]. 重庆:西南大学, 2012. DONG GJ. Biocontrol Mechanisms of Pseudomonas fluorescens strain P-72-10 on black shank disease of tobacco[D]. Chongqing:Doctoral Dissertation of Southwest University, 2012(in Chinese).
    [22] 康慎敏, 武瑞赟, 穆文强, 尚庆茂, 李平兰. 优良植物根际促生菌的筛选及其生物学特性[J]. 中国农业大学学报, 2023, 28(1):137-152. KANG SM, WU RY, MU WQ, SHANG QM, LI PL. Isolation and biological characteristics investigation of superior plant growth promoting rhizobacteria[J]. Journal of China Agricultural University, 2023, 28(1):137-152(in Chinese).
    [23] 王子强, 许乐, 张爽, 邢倩, 刘丽娜, 洒荣波. 丹参内生拮抗细菌DS-R5对丹参根际和根表土壤细菌群落结构的影响[J]. 中国微生态学杂志, 2022, 34(2):150-155. WANG ZQ, XU L, ZHANG S, XING Q, LIU LN, SA RB. Effects of endophytic antagonistic bacterium DS-R5 of Salvia miltiorrhiza on bacterial community structure in rhizospheric and rhizoplanic soil[J]. Chinese Journal of Microecology, 2022, 34(2):150-155(in Chinese).
    [24] KUMAR S, STECHER G, TAMURA K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7):1870-1874.
    [25] TAMURA K, NEI M, KUMAR S. Prospects for inferring very large phylogenies by using the neighbor-joining method[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30):11030-11035.
    [26] 陈佳兴, 秦琴, 邱树毅, 王雪郦. 磷尾矿土壤中解磷细菌的筛选及解磷能力的测定[J]. 生物技术通报, 2018, 34(6):183-189. CHEN JX, QIN Q, QIU SY, WANG XL. Isolation, identification of phosphate-solubilizing bacteria derived from phosphate tailing soil and their capacities[J]. Biotechnology Bulletin, 2018, 34(6):183-189(in Chinese).
    [27] 胡珊, 梁卫驱, 黄皓, 徐匆, 罗华建, 胡楚维, 黄晓彦, 陈仕丽. 中药渣堆肥中解磷细菌的筛选、鉴定及其拮抗作用[J]. 生物技术通报, 2022, 38(3):92-102. HU S, LIANG WQ, HUANG H, XU C, LUO HJ, HU CW, HUANG XY, CHEN SL. Screening, identification and antagonism of phosphate-solubilizing bacteria from the compost Chinese medicinal herbal residues[J]. Biotechnology Bulletin, 2022, 38(3):92-102(in Chinese).
    [28] 孙亚凯. 功能性微生物菌株的筛选及组合菌群活性研究[D]. 天津:天津大学硕士学位论文, 2006. SUN YK. Screening of functional microbial strains and study on the activity of combined flora[D]. Tianjin:Master's Thesis of Tianjin University, 2006(in Chinese).
    [29] 李剑峰, 张淑卿, 龙莹, 郭金梅. 石漠生境下金银花内生/根际解磷菌在不同温度及酸碱环境下的生长和溶磷能力[J]. 西南农业学报, 2021, 34(4):820-826. LI JF, ZHANG SQ, LONG Y, GUO JM. Growth and phosphate-solubilizing ability of endophytic/rhizospheric phosphate-solubilizing bacteria of Lonicera japonica at different temperature and pH environment in rocky desertification habitat[J]. Southwest China Journal of Agricultural Sciences, 2021, 34(4):820-826(in Chinese).
    [30] 张东艳, 刘晔, 吴越, 王国文, 万兵兵, 姜瑛. 花生根际产IAA菌的筛选鉴定及其效应研究[J].中国油料作物学报, 2016, 38(1):104-110. ZHANG DY, LIU Y, WU Y, WANG GW, WAN BB, JIANG Y. Isolation and identification of IAA-producing strains from peanut rhizosphere and its promoting effects on peanut growth[J]. Chinese Journal of Oil Crop Sciences, 2016, 38(1):104-110(in Chinese).
    [31] 刘晔, 刘晓丹, 张林利, 吴越, 王国文, 汪强, 姜瑛. 花生根际多功能高效促生菌的筛选鉴定及其效应研究[J]. 生物技术通报, 2017, 33(10):125-134. LIU Y, LIU XD, ZHANG LL, WU Y, WANG GW, WANG Q, JIANG Y. Screening, identification of multifunctional peanut root-promoting rhizobacteria and its promoting effects on peanuts (Arachis hypogaea L.)[J]. Biotechnology Bulletin, 2017, 33(10):125-134(in Chinese).
    [32] 许佳露, 张平, 李美芳, 廖柏寒, 彭佩钦, 李靖, 梅金星. 产铁载体菌株的分离、培养条件优化及初步应用[J]. 微生物学通报, 2022, 49(3):1004-1016. XU JL, ZHANG P, LI MF, LIAO BH, PENG PQ, LI J, MEI JX. Isolation, culture condition optimization, and preliminary application of siderophore-producing strains[J]. Microbiology China, 2022, 49(3):1004-1016(in Chinese).
    [33] 曹宏丽, 郝尚华, 楚梦晓, 邱爽, 罗梦香, 王明道. 1株高产铁载体菌株的筛选鉴定以及化感作用的验证[J]. 河南农业大学学报, 2021, 55(4):727-735. CAO HL, HAO SH, CHU MX, QIU S, LUO MX, WANG MD. Screening and identification of a high-yielding siderophore strain and verification of allelopathic effect[J]. Journal of Henan Agricultural University, 2021, 55(4):727-735(in Chinese).
    [34] 徐欢, 俞新玲, 林勇明, 吴承祯, 谢安强, 陈灿, 李键, 洪滔. 桉树根际土壤解磷细菌的分离、筛选及其解磷效果[J]. 福建农林大学学报(自然科学版), 2016, 45(5):529-535. XU H, YU XL, LIN YM, WU CZ, XIE AQ, CHEN C, LI J, HONG T. Isolation, screening of phosphate solubilizing capacity of phosphate solubilizing bacteria in Eucalyptus species[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2016, 45(5):529-535(in Chinese).
    [35] JAYA GI, UTAMI SH, WIDADA J, YUSUF WA. Characterization of phosphate-solubilizing bacteria isolated from acidic Ultisol soil, South Borneo[J]. IOP Conference Series:Earth and Environmental Science, 2020, 449(1):012005.
    [36] ALIYAT FZ, MALDANI M, EL GUILLI M, NASSIRI L, IBIJBIJEN J. Phosphate-solubilizing bacteria isolated from phosphate solid sludge and their ability to solubilize three inorganic phosphate forms:calcium, iron, and aluminum phosphates[J]. Microorganisms, 2022, 10(5):980.
    [37] CHEN XR, HU XY, LU QL, YANG YY, LINGHU SS, ZHANG XY. Study on the differences in sludge toxicity and microbial community structure caused by catechol, resorcinol and hydroquinone with metagenomic analysis[J]. Journal of Environmental Management, 2022, 302:114027.
    [38] AHMAD F, AHMAD I, KHAN MS. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities[J]. Microbiological Research, 2008, 163(2):173-181.
    [39] 张昊鑫, 王中华, 牛兵, 郭慷, 刘璐, 姜瑛, 张仕祥. 产IAA兼具溶磷解钾高效促生菌的筛选、鉴定及其广谱性应用[J]. 生物技术通报, 2022, 38(5):100-111. ZHANG HX, WANG ZH, NIU B, GUO K, LIU L, JIANG Y, ZHANG SX. Screening, identification and broad-spectrum application of efficient IAA-producing bacteria dissolving phosphorus and potassium[J]. Biotechnology Bulletin, 2022, 38(5):100-111(in Chinese).
    [40] INKAEWPUANGKHAM W, INKHAM C, RUAMRUNGSRI S, CHROMKAEW Y, PANJAMA K. Assessment of IAA synthesis by endophytic bacteria in Vanda (Orchidaceae)[J]. Acta Horticulturae, 2022(1339):331-338.
    [41] LUCENA JJ, HERNANDEZ-APAOLAZA L. Iron nutrition in plants:an overview[J]. Plant and Soil, 2017, 418(1):1-4.
    [42] 李雪艳, 张涛, 杨红梅, 楚敏, 高雁, 曾军, 霍向东, 张涛, 林青, 欧提库尔, 李玉国, 娄恺, 史应武. 棉花黄萎病拮抗细菌产铁载体测定及其对抑菌活性的影响[J]. 微生物学通报, 2019, 46(5):1074-1080. LI XY, ZHANG T, YANG HM, CHU M, GAO Y, ZENG J, HUO XD, ZHANG T, LIN Q, OUTIKUER, LI YG, LOU K, SHI YW. Determination of the siderophore produced by antagonistic cotton Verticillium wilt bacteria and its effect on antibacterial activity[J]. Microbiology China, 2019, 46(5):1074-1080(in Chinese).
    [43] CHAIHARN M, CHUNHALEUCHANON S, LUMYONG S. Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand[J]. World Journal of Microbiology and Biotechnology, 2009, 25(11):1919-1928.
    [44] PHURAILATPAM L, GUPTA A, SAHU PK, MISHRA S. Insights into the functional potential of bacterial endophytes from the ethnomedicinal plant, Piper longum L.[J]. Symbiosis, 2022, 87(2):165-174.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黎萍,高新星,韩昆明,孙利芹,李岩. 花生根际微生物的分离及高效功能菌株筛选[J]. 微生物学通报, 2023, 50(10): 4433-4447

复制
分享
文章指标
  • 点击次数:418
  • 下载次数: 1071
  • HTML阅读次数: 653
  • 引用次数: 0
历史
  • 收稿日期:2023-02-13
  • 录用日期:2023-04-21
  • 在线发布日期: 2023-10-07
  • 出版日期: 2023-10-20
文章二维码