科微学术

微生物学通报

真菌发酵有效提升秸秆炭有机污染物吸附性能
作者:
作者单位:

浙江科技学院环境与资源学院 浙江省废弃生物质循环利用与生态处理技术重点实验室, 浙江  杭州    310023

基金项目:

国家重点研发计划(2022YFE0196000);国家自然科学基金(41907276);浙江省自然科学基金(LQ19D030001)


Fungal fermentation enhances organic pollutant adsorption performance of straw biochar
Author:
Affiliation:

Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China

Fund Project:

This work was supported by the National Key Research and Development Program of China (2022YFE0196000), the National Natural Science Foundation of China (41907276), and the Natural Science Foundation of Zhejiang Province (LQ19D030001)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献 [11]
  • | | |
  • 文章评论
    摘要:

    背景 我国农业废弃秸秆存量大,微生物发酵无法实现其彻底转化,仍造成二次污染和资源浪费的问题。秸秆发酵废弃物可经热解炭化制备吸附剂用于水体有机污染物的高效去除。 目的 探究以秸秆发酵废弃物为原料所制备秸秆炭对有机污染物的去除效率,明确发酵过程对秸秆炭吸附性能的影响及机制,为水体有机污染物的高效去除和秸秆发酵废弃物的再利用提供参考。 方法 以丝状真菌里氏木霉QM6a和棘孢木霉T-1为发酵菌株,分别对小麦和水稻秸秆进行固态发酵,发酵残渣经热解炭化后用于吸附典型有机偶氮染料亚甲基蓝(methylene blue, MB)。 结果 发酵处理可缩短吸附平衡时间,有效提高小麦秸秆炭对MB的吸附效率,但对水稻秸秆炭吸附性能无明显提升作用。棘孢木霉T-1发酵的小麦秸秆经600 ℃热解所得秸秆炭(BaWS 600)对MB (50 mg/L)的吸附效率较天然秸秆炭(BWS 600)提高53.6%。准二级动力学模型可有效模拟吸附过程,BaWS 600的平衡吸附量比BWS 600和BWS 800高119.4%和299.4%。Freundlich模型可较好描述等温吸附过程,表明MB在秸秆炭表面的吸附为多分子层吸附。秸秆发酵将小麦秸秆炭比表面积提高47.4%‒245.8%不等,且可增加热解炭化产物表面含氧官能团丰富度,是MB吸附效率得以有效提升的主要原因。 结论 真菌发酵过程可有效改善秸秆炭性状和污染物吸附性能,而棘孢木霉T-1因具有更优的纤维素酶分泌能力,更适合作为发酵菌株用于改良秸秆炭污染物吸附性能。

    Abstract:

    Background China has abundant waste straw. The incomplete transformation of straw by microbial fermentation causes secondary pollution and resource wastes. The wastes from straw fermentation can be carbonized to prepare the adsorbent for removing organic pollutants from water. Objective To investigate the pollutant removal efficiency of biochar prepared from fermented straw, clarify the effects of fermentation process on the properties of straw biochar, and finally provide a theoretical basis for reusing the wastes from straw fermentation and removing organic pollutants from water. Methods Solid-state fermentation of wheat straw and rice straw was carried out with Trichoderma reesei QM6a and T. asperellum T-1, respectively. The fermentation residues were then pyrolyzed to adsorb methylene blue (MB). Results The fermentation of straw effectively shortened the time to adsorption equilibrium and improved the MB adsorption efficiency of wheat straw biochar. The adsorption efficiency of MB (50 mg/L) by the biochar pyrolyzed at 600 ℃ from wheat straw pre-fermented by T. asperellum T-1 (BaWS 600) was 53.6% higher than that from natural straw (BWS 600). The pseudo-second-order model could well fit the adsorption process, and the MB adsorption capacity of BaWS 600 was 119.4% and 299.4% higher than that of BWS 600 and BWS 800, respectively. Freundlich isothermal adsorption equation could well characterize the isothermal adsorption process, which indicated the multi-molecular layer adsorption of MB by straw biochar. Straw fermentation increased the specific surface area of wheat straw biochar by 47.4% to 245.8% and promoted the exposure of oxygen-containing functional groups, which might be the main reasons for the improvement of MB adsorption efficiency. Conclusion Fermentation can effectively improve the properties of straw biochar for pollutant removal. T. asperellum T-1 was identified to be more suitable for straw fermentation to improve the pollutant adsorption performance of biochar because of its stronger cellulase-secreting ability.

    参考文献
    [1] ZHU N, LIU JW, YANG JS, LIN YJ, YANG Y, JI L, LI M, YUAN HL. Comparative analysis of the secretomes of Schizophyllum commune and other wood-decay basidiomycetes during solid-state fermentation reveals its unique lignocellulose-degrading enzyme system[J]. Biotechnology for Biofuels, 2016, 9: 42.
    [2] LAZDOVICA K, KAMPARS V, LIEPINA L, VILKA M. Comparative study on thermal pyrolysis of buckwheat and wheat straws by using TGA-FTIR and Py-GC/MS methods[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 1-15.
    [3] ZHANG XX, ZHANG PZ, YUAN XR, LI YF, HAN LJ. Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar[J]. Bioresource Technology, 2020, 296: 122318.
    [4] LIU GD, QIN YQ, LI ZH, QU YB. Improving lignocellulolytic enzyme production with Penicillium: from strain screening to systems biology[J]. Biofuels, 2013, 4(5): 523-534.
    [5] YAO YL, ZHU FX, HONG CL, CHEN HJ, WANG W, XUE ZY, ZHU WJ, WANG GL, TONG WB. Utilization of gibberellin fermentation residues with swine manure by two-step composting mediated by housefly maggot bioconversion[J]. Waste Management, 2020, 105: 339-346.
    [6] ALBALASMEH A, GHARAIBEH MA, MOHAWESH O, ALAJLOUNI M, QUZAIH M, MASAD M, HANANDEH AE. Characterization and artificial neural networks modelling of methylene blue adsorption of biochar derived from agricultural residues: effect of biomass type, pyrolysis temperature, particle size[J]. Journal of Saudi Chemical Society, 2020, 24(11): 811-823.
    [7] ZHANG X, ZHENG HH, WU J, CHEN W, CHEN YQ, GAO XZ, YANG HP, CHEN HP. Physicochemical and adsorption properties of biochar from biomass-based pyrolytic polygeneration: effects of biomass species and temperature[J]. Biochar, 2021, 3(4): 657-670.
    [8] 张桂香, 赵志华, 韩志旺, 何丽霞, 朱宇恩. 生物质炭对农田土壤中抗生素消减和潜在风险的影响[J]. 环境科学学报, 2021, 41(6): 2369-2378.
    [9] YANG GX, JIANG H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater[J]. Water Research, 2014, 48(1): 396-405.
    [10] WANG H, WANG, S, GAO YH. Cetyl trimethyl ammonium bromide modified magnetic biochar from pine nut shells for efficient removal of acid chrome blue K[J]. Bioresource Technology, 2020, 312: 123564.
    [11] FU D, CHEN Z, XIA D, SHEN L, WANG, YP, LI QB. A novel solid digestate-derived biochar-Cu NP composite activating H2O2 system for simultaneous adsorption and degradation of tetracycline[J]. Environmental Pollution, 2017, 221: 301-310.
    [12] WANG Q, CHEN L, YU DB, LIN H, SHEN Q, ZHAO YH. Excellent waste biomass-degrading performance of Trichoderma asperellum T-1 during submerged fermentation[J]. Science of the Total Environment, 2017, 609: 1329-1339.
    [13] 张竞文. 厌氧处理玉米秸秆生物炭吸附特性研究[D]. 沈阳: 沈阳农业大学硕士学位论文, 2022. ZHANG JW. Study on the adsorption characteristics of anaerobically treated corn stover biochar[D]. Shenyang: Master's Thesis of Agricultural University, 2022 (in Chinese).
    [14] 王亚洲. 微生物发酵棉秆基生物质炭制备及对铀的吸附性能研究[D]. 绵阳: 西南科技大学硕士学位论文, 2022. WANG YZ. Preparation of microbial fermented cotton straw-based biomass carbon and its adsorption performance for uranium[D]. Mianyang: Master's Thesis of Southwest University of Science and Technology, 2022 (in Chinese).
    [15] 张德俐, 王芳, 易维明, 李志合, 李永军, 柳善建. 木质纤维素生物质厌氧发酵沼渣热化学转化利用研究进展[J]. 农业工程学报, 2021, 37(21): 225-236.
    [16] 高婷. 厨余厌氧发酵沼渣生物炭制备及其在染料废水中的应用[D]. 扬州: 扬州大学硕士学位论文, 2022. GAO T. Preparation of biochar from biogas residue by anaerobic fermentation of kitchen waste and its application in dye wastewater[D]. Yangzhou: Master's Thesis of Yangzhou University, 2022 (in Chinese).
    [17] 王玉, 余广炜, 江汝清, 黎长江, 林佳佳, 邢贞娇. 餐厨厌氧沼渣生物炭吸附盐酸环丙沙星[J]. 化工进展, 2023, 42(4): 2160-2170.
    [18] BEDEKAR PA, KSHIRSAGAR SD, GHOLAVE AR, GOVINDWAR SP. Degradation and detoxification of methylene blue dye adsorbed on water hyacinth in semi continuous anaerobic-aerobic bioreactors by novel microbial consortium-SB[J]. RSC Advances, 2015, 5(120): 99228-99239.
    [19] 席尚东, 高磊, 刘文宗, 王爱杰. 利用生活污水提升厌氧-生物电化学耦合系统处理染料废水的效能及关键功能微生物研究[J]. 环境科学学报, 2019, 39(2): 290-300.
    [20] ISHAK SA, MURSHED MF, AKIL MH, ISMAIL N, RASIB SZM, AL-GHEETHI AAS. The application of modified natural polymers in toxicant dye compounds wastewater: a review[J]. Water, 2020, 12(7): 2032.
    [21] 张森晗, 赵永华, 史兴浩, 刘雪, 李婷, 张雨婷. 核桃壳生物炭负载铁催化降解亚甲基蓝性能研究[J]. 化学研究与应用, 2022, 34(4): 897-903.
    [22] LI LX, LV Y, WANG J, JIA C, ZHAN ZH, DONG ZL, LIU LL, ZHU XD. Enhance pore structure of cyanobacteria-based porous carbon by polypropylene to improve adsorption capacity of methylene blue[J]. Bioresource Technology, 2022, 343: 126101.
    [23] MARSOLA SJ, JORGE LF, MENIQUETI AB, BERTéLI MBD, LIMA TEFD, BEZERRA JL, LOPES AD, GAZIM ZC, VALLE JSD, COLAUTO NB, LINDE GA. Endophytic fungi of Brunfelsia uniflora: isolation, cryopreservation, and determination of enzymatic and antioxidant activity[J]. World Journal of Microbiology and Biotechnology, 2022, 38(6): 94.
    [24] VANCOV T, KEEN B. Rapid isolation and high-throughput determination of cellulase and laminarinase activity in soils[J]. Journal of Microbiological Methods, 2009, 79(2): 174-177.
    [25] AL-WABEL MI, AL-OMRAN A, EL-NAGGAR AH, NADEEM M, USMAN ARA. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes[J]. Bioresource Technology, 2013, 131: 374-379.
    [26] YANG HP, YAN R, CHEN HP, ZHENG CG, LEE DH, LIANG DT. In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin[J]. Energy & Fuels, 2006, 20(1): 388-393.
    [27] HE X, LIU Z, NIU W, YANG L, ZHOU T, QIN D, NIU ZY, YUAN QX. Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues[J]. Energy, 2018, 143: 746-756.
    [28] 闫改萌, 石丹丹, 张渺, 党丹, 王天贵. 改性稻壳对水中亚甲基蓝的吸附性能研究[J]. 化学工程师, 2021, 35(9): 35-38.
    [29] 杨俊晖, 张惠灵, 梁俊杰, 胡泽康. 壳聚糖/磁性榴莲生物炭对亚甲基蓝的吸附研究[J]. 环境科学与技术, 2021, 44(12): 7-12.
    [30] 冯倩, 徐荣声, 李梅, 张海永. 向日葵制活性炭对亚甲基蓝的吸附研究[J]. 无机盐工业, 2021, 53(12): 122-128.
    [31] LIU GZ, ZHU ZL, YANG YX, SUN YR, YU F, MA J. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater[J]. Environmental Pollution, 2019, 246: 26-33.
    [32] 薛向东, 王星源, 梅雨晨, 庄海峰, 宋亚丽, 方程冉. 微塑料对水中铜离子和四环素的吸附行为[J]. 环境科学, 2020, 41(8): 3675-3683.
    [33] 刘迪, 童非, 高岩, 卢信, 樊广萍, 张娅香, 张振华. 重金属存在下微塑料对环丙沙星的吸附特征及机制研究[J]. 农业环境科学学报, 2021, 40(5): 1017-1025.
    [34] 张凯娜, 李嘉, 李晓强, 张华. 微塑料表面土霉素的吸附-解吸机制与动力学过程[J]. 环境化学, 2017, 36(12): 2531-2540.
    [35] LIU JX, HUANG SM, CHEN K, WANG T, MEI M, LI JP. Preparation of biochar from food waste digestate: Pyrolysis behavior and product properties[J]. Bioresource Technology, 2020, 302: 122841.
    [36] SHI JX, FAN XL, TSANG DCW, WANG F, SHEN ZT, HOU DY, ALESSI DS. Removal of lead by rice husk biochars produced at different temperatures and implications for their environmental utilizations[J]. Chemosphere, 2019, 235: 825-831.
    [37] LI HB, DONG XL, SILVA EBD, OLIVEIRA LMD, CHEN YS, MA LQ. Mechanisms of metal sorption by biochars: biochar characteristics and modifications[J]. Chemosphere, 2017, 178: 466-478.
    [38] YUAN HR, LU T, WANG YZ, HUANG HY, CHEN Y. Influence of pyrolysis temperature and holding time on properties of biochar derived from medicinal herb (radix isatidis) residue and its effect on soil CO2 emission[J]. Journal of Analytical and Applied Pyrolysis, 2014, 110: 277-284.
    [39] KIM JA, VIJAYARAGHAVAN K, REDDY DHK, YUN YS. A phosphorus-enriched biochar fertilizer from bio-fermentation waste: a potential alternative source for phosphorus fertilizers[J]. Journal of Cleaner Production, 2018, 196: 163-171.
    [40] WON SW, KIM S, KOTTE P, LIM A, YUN YS. Cationic polymer-immobilized polysulfone-based fibers as high performance sorbents for Pt(Ⅳ) recovery from acidic solutions[J]. Journal of Hazardous Materials, 2013, 263: 391-397.
    [41] ZHAO B, O'CONNOR D, ZHANG JL, PENG TY, SHEN ZT, TSANG DCW, HOU DY. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar[J]. Journal of Cleaner Production, 2018, 174: 977-987.
    [42] GALIC M, CILERDZIC J, VUKOJEVIC J, STAJIC M, BRCESKI I. Potential of selected micromycetes for wheat straw degradation[J]. Journal of Environmental Protection and Ecology, 2018, 19(3): 1116-1122.
    [43] NI H, ZHANG T, GUO X, HU Y, XIAO A, JIANG Z, LI L, LI Q. Comparison between irradiating and autoclaving citrus wastes as substrate for solid-state fermentation by Aspergillus aculeatus[J]. Letters in Applied Microbiology, 2019, 69(1): 71-78.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

修江辉,马康婷,徐梦萍,刘冰洋,王群,单胜道,刘舒晨,邵俊诚. 真菌发酵有效提升秸秆炭有机污染物吸附性能[J]. 微生物学通报, 2023, 50(10): 4372-4388

复制
分享
文章指标
  • 点击次数:298
  • 下载次数: 710
  • HTML阅读次数: 741
  • 引用次数: 0
历史
  • 收稿日期:2023-02-19
  • 录用日期:2023-05-12
  • 在线发布日期: 2023-10-27
  • 出版日期: 2023-10-20
文章二维码