科微学术

微生物学通报

青海湖3种类型高寒湿地甲烷氧化菌群落特征
作者:
  • 王霞

    王霞

    青海师范大学生命科学学院, 青海 西宁 810008;青海省自然地理与环境过程重点实验室, 青海 西宁 810008;青海师范大学 青藏高原地表过程与生态保育教育部重点实验室, 青海 西宁 810008;青海青海湖湿地生态系统国家定位观测研究站, 青海 西宁 810008
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 陈克龙

    陈克龙

    青海省自然地理与环境过程重点实验室, 青海 西宁 810008;青海师范大学 青藏高原地表过程与生态保育教育部重点实验室, 青海 西宁 810008;青海青海湖湿地生态系统国家定位观测研究站, 青海 西宁 810008;高原科学与可持续发展研究院, 青海 西宁 810008
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 王恒生

    王恒生

    合肥师范学院生命科学学院, 安徽 合肥 230000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 章妮

    章妮

    青海省自然地理与环境过程重点实验室, 青海 西宁 810008;青海师范大学 青藏高原地表过程与生态保育教育部重点实验室, 青海 西宁 810008
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 车子涵

    车子涵

    青海师范大学生命科学学院, 青海 西宁 810008;青海省自然地理与环境过程重点实验室, 青海 西宁 810008;青海师范大学 青藏高原地表过程与生态保育教育部重点实验室, 青海 西宁 810008;青海青海湖湿地生态系统国家定位观测研究站, 青海 西宁 810008
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 祁闻

    祁闻

    青海省自然地理与环境过程重点实验室, 青海 西宁 810008;青海师范大学 青藏高原地表过程与生态保育教育部重点实验室, 青海 西宁 810008;青海师范大学地理科学学院, 青海 西宁 810008
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 暴涵

    暴涵

    青海师范大学生命科学学院, 青海 西宁 810008;青海省自然地理与环境过程重点实验室, 青海 西宁 810008;青海师范大学 青藏高原地表过程与生态保育教育部重点实验室, 青海 西宁 810008;青海青海湖湿地生态系统国家定位观测研究站, 青海 西宁 810008
    在期刊界中查找
    在百度中查找
    在本站中查找
基金项目:

第二次青藏高原综合科学考察研究项目(2019QZKK0405);青海省科技计划项目(2022-QY-204)


Community characteristics of methane-oxidizing bacteria in three types of alpine wetlands around Qinghai Lake
Author:
  • WANG Xia

    WANG Xia

    College of Life Sciences, Qinghai Normal University, Xining 810008, Qinghai, China;Key Laboratory of Physical Geography and Environmental Processes of Qinghai Province, Xining 810008, Qinghai, China;Key Laboratory of Surface Processes and Ecological Conservation of the Qinghai-Xizang Plateau, Qinghai Normal University, Xining 810008, Qinghai, China;National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem, Xining 810008, Qinghai, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Kelong

    CHEN Kelong

    Key Laboratory of Physical Geography and Environmental Processes of Qinghai Province, Xining 810008, Qinghai, China;Key Laboratory of Surface Processes and Ecological Conservation of the Qinghai-Xizang Plateau, Qinghai Normal University, Xining 810008, Qinghai, China;National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem, Xining 810008, Qinghai, China;Academy of Plateau Science and Sustainability, Xining 810008, Qinghai, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Hengsheng

    WANG Hengsheng

    School of Life Sciences, Hefei Normal University, Hefei 230000, Anhui, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Ni

    ZHANG Ni

    Key Laboratory of Physical Geography and Environmental Processes of Qinghai Province, Xining 810008, Qinghai, China;Key Laboratory of Surface Processes and Ecological Conservation of the Qinghai-Xizang Plateau, Qinghai Normal University, Xining 810008, Qinghai, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHE Zihan

    CHE Zihan

    College of Life Sciences, Qinghai Normal University, Xining 810008, Qinghai, China;Key Laboratory of Physical Geography and Environmental Processes of Qinghai Province, Xining 810008, Qinghai, China;Key Laboratory of Surface Processes and Ecological Conservation of the Qinghai-Xizang Plateau, Qinghai Normal University, Xining 810008, Qinghai, China;National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem, Xining 810008, Qinghai, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • QI Wen

    QI Wen

    Key Laboratory of Physical Geography and Environmental Processes of Qinghai Province, Xining 810008, Qinghai, China;Key Laboratory of Surface Processes and Ecological Conservation of the Qinghai-Xizang Plateau, Qinghai Normal University, Xining 810008, Qinghai, China;School of Geographical Sciences, Qinghai Normal University, Xining 810008, Qinghai, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • BAO Han

    BAO Han

    College of Life Sciences, Qinghai Normal University, Xining 810008, Qinghai, China;Key Laboratory of Physical Geography and Environmental Processes of Qinghai Province, Xining 810008, Qinghai, China;Key Laboratory of Surface Processes and Ecological Conservation of the Qinghai-Xizang Plateau, Qinghai Normal University, Xining 810008, Qinghai, China;National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem, Xining 810008, Qinghai, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】甲烷氧化菌在维持湿地生态系统碳平衡方面发挥着重要作用,青海湖高寒湿地具有十分重要的生态地位,但目前有关该地区甲烷氧化菌的研究相对较少。【目的】探究不同类型高寒湿地土壤甲烷氧化菌的群落特征与驱动因素。【方法】以青海湖流域内的小泊湖沼泽湿地、鸟岛湖滨湿地、瓦颜山河源湿地为研究对象,通过高通量测序技术对土壤甲烷氧化菌进行检测。【结果】3种不同类型高寒湿地土壤甲烷氧化菌的优势菌门均为变形菌门(Proteobacteria)。鸟岛湖滨湿地与瓦颜山河源湿地的甲烷氧化菌α多样性存在显著差异(P<0.05),而小泊湖沼泽湿地与二者的甲烷氧化菌α多样性的差异不显著(P>0.05)。LEfSe分析表明,不同类型高寒湿地共存在40个差异菌群,尤以瓦颜山河源湿地差异菌群数量最多,从门到属水平均存在显著差异。冗余分析(redundancy analysis, RDA)表明,甲烷氧化菌菌群变化的主要驱动因子为土壤温度、土壤水分、电导率。【结论】整体而言,青海湖3种类型高寒湿地土壤理化性质及甲烷氧化菌群落多样性均存在差异,且部分菌群的相对丰度具有显著性差异(P<0.05)。

    Abstract:

    [Background] Methane-oxidizing bacteria play a role in maintaining the carbon balance of wetland ecosystems. Qinghai Lake alpine wetland has an important ecological status, while the methane-oxidizing bacteria in this area remain to be studied. [Objective] To explore the community characteristics and driving factors of methane-oxidizing bacteria in different types of alpine wetlands. [Methods] The methane-oxidizing bacteria in Xiaobo Lake swamp wetland, Bird Island lakeside wetland, and Wayanshan river source wetland were detected by high-throughput sequencing. [Results] The dominant phylum of methane-oxidizing bacteria in the three alpine wetlands was Proteobacteria. The alpha diversity of methane-oxidizing bacteria was different between Bird Island lakeside wetland and Wayanshan river source wetland (P<0.05), while it was similar between Xiaobo Lake swamp wetland and other two wetlands (P>0.05). The linear discriminant analysis effect size (LEfSe) revealed 40 differential microbial taxa between different types of alpine wetlands, and Wayanshan river source wetland had the most differential microbial taxa from the phylum to genus level. The redundant analysis showed that the main factors influencing the community structure of methane-oxidizing bacteria were soil temperature, soil moisture, and electrical conductivity. [Conclusion] The soil physical and chemical properties, methane-oxidizing bacterial diversity, and the relative abundance of several bacterial taxa (P<0.05) have differences among the three alpine wetlands around Qinghai Lake.

    参考文献
    [1] 贺晨旻, 迟远英, 向翩翩, 徐杨梅, 吴亚珍, 焦玉捷, 胡宇, 姜克隽. 我国甲烷排放情景分析:IPAC模型结果[J]. 大气科学学报, 2022, 45(3):414-427. HE CM, CHI YY, XIANG PP, XU YM, WU YZ, JIAO YJ, HU Y, JIANG KJ. CH4 emission scenario analysis for China:IPAC results[J]. Transactions of Atmospheric Sciences, 2022, 45(3):414-427(in Chinese).
    [2] CONRAD R. The global methane cycle:recent advances in understanding the microbial processes involved[J]. Environmental Microbiology Reports, 2009, 1(5):285-292.
    [3] 姚璐, 杨东旭, 蔡兆男, 朱思虹, 刘毅, 邓剑波, 田龙飞, 尹增山, 卢乃锰. 面向我国碳中和、碳达峰的大气甲烷观测卫星现状与发展趋势分析[J]. 大气科学, 2022, 46(6):1469-1483. YAO L, YANG DX, CAI ZN, ZHU SH, LIU Y, DENG JB, TIAN LF, YIN ZS, LU NM. Status and trend analysis of atmospheric methane satellite measurement for carbon neutrality and carbon peaking in China[J]. Chinese Journal of Atmospheric Sciences, 2022, 46(6):1469-1483(in Chinese).
    [4] 聂明. 气候变暖下水圈甲烷排放及其微生物学机制[J]. 微生物学报, 2020, 60(9):1821-1833. NIE M. Hydrospheric methane emission and its microbiological mechanisms under climate warming[J]. Acta Microbiologica Sinica, 2020, 60(9):1821-1833(in Chinese).
    [5] 王子豪, 陈庆锋, 李金业, 司国瑞, 赵维怡, 刘婷. 黄河三角洲盐沼湿地甲烷厌氧氧化潜力及微生物群落对铁锰输入的响应研究[J]. 环境科学学报, 2022, 42(10):452-461. WANG ZH, CHEN QF, LI JY, SI GR, ZHAO WY, LIU T. Methane anaerobic oxidation potential and microbial community response to Fe and Mn input in a salt marsh wetland ofthe Yellow River Delta[J]. Acta Scientiae Circumstantiae, 2022, 42(10):452-461(in Chinese).
    [6] 张贤, 朱求安, 杨斌, 王洁仪, 陈槐, 彭长辉. 基于过程模型的青藏高原湿地甲烷排放格局评估[J]. 生态学报, 2020, 40(9):3060-3071. ZHANG X, ZHU QA, YANG B, WANG JY, CHEN H, PENG CH. Evaluating patterns of wetland methane emissions in Qinghai-Tibet Plateau based on process model[J]. Acta Ecologica Sinica, 2020, 40(9):3060-3071(in Chinese).
    [7] SHI PL, SUN XM, XU LL, ZHANG XZ, HE YT, ZHANG DQ, YU GR. Net ecosystem CO2 exchange and controlling factors in a steppe-Kobresia meadow on the Tibetan Plateau[J]. Science in China Series D:Earth Sciences, 2006, 49(2):207-218.
    [8] CHEN H, JU PJ, ZHU QA, XU XL, WU N, GAO YH, FENG XJ, TIAN JQ, NIU SL, ZHANG YJ, PENG CH, WANG YF. Carbon and nitrogen cycling on the Qinghai-Tibetan Plateau[J]. Nature Reviews Earth and Environment, 2022, 3(10):701-716.
    [9] ZHANG B, NIU Z, ZHANG DQ, HUO XL. Dynamic changes and driving forces of alpine wetlands on the Qinghai-Tibetan Plateau based on long-term time series satellite data:a case study in the Gansu Maqu wetlands[J]. Remote Sens, 2022, 14:4147.
    [10] PAN H, FENG HJ, LIU YW, LAI CY, ZHUGE YP, ZHANG QC, TANG CX, DI HJ, JIA ZJ, GUBRY-RANGIN C, LI Y, XU JM. Grazing weakens competitive interactions between active methanotrophs and nitrifiers modulating greenhouse-gas emissions in grassland soils[J]. ISME Communications, 2021, 1:74.
    [11] CAI YF, ZHENG Y, BODELIER PLE, CONRAD R, JIA ZJ. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils[J]. Nature Communications, 2016, 7:11728.
    [12] CAO SK, CAO GC, FENG Q, HAN GZ, LIN YY, YUAN J, WU FT, CHENG SY. Alpine wetland ecosystem carbon sink and its controls at the Qinghai Lake[J]. Environmental Earth Sciences, 2017, 76(5):210.
    [13] 程雷星, 陈克龙, 汪诗平, 杨仕兵, 苏旭, 王记明. 青海湖流域小泊湖湿地植物多样性[J]. 湿地科学, 2013, 11(4):460-465. CHENG LX, CHEN KL, WANG SP, YANG SB, SU X, WANG JM. Plant diversity of Xiaopohu wetlands in Qinghai Lake basin[J]. Wetland Science, 2013, 11(4):460-465(in Chinese).
    [14] 杨紫唯, 陈克龙, 张乐乐, 蒋莉莉, 左弟召. 青海湖流域两种不同高寒湿地类型CO2、CH4和N2O排放通量对模拟降水的响应[J].生态科学, 2022, 41(2):211-219. YANG ZW, CHEN KL, ZHANG LL, JIANG LL, ZUO DZ. Response of CO2, CH4 and N2O fluxes of two different alpine wetland types in Qinghai Lake basin to simulated precipitation[J]. Ecological Science, 2022, 41(2):211-219(in Chinese).
    [15] 陈骥, 曹军骥, 金钊, 时伟宇, 张宝成, 张思毅. 模拟增温对青海湖鸟岛高寒草原群落结构影响初步研究[J]. 干旱区资源与环境, 2014, 28(5):127-133. CHEN J, CAO JJ, JIN Z, SHI WY, ZHANG BC, ZHANG SY. The influence of short-term experimental warming on alpine steppe of bird island, Qinghai Lake[J]. Journal of Arid Land Resources and Environment, 2014, 28(5):127-133(in Chinese).
    [16] 陈艳鑫, 耿玉清, 黄金, 崔雪晴, 侯盟. 青海湖鸟岛地区不同淹水条件下土壤酶活性的差异及其影响因素[J]. 生态学杂志, 2019, 38(3):735-743. CHEN YX, GENG YQ, HUANG J, CUI XQ, HOU M. Differences of soil enzyme activities and their driving factors under different flooding conditions in the Bird Island area, Qinghai Lake[J]. Chinese Journal of Ecology, 2019, 38(3):735-743(in Chinese).
    [17] 张乐乐, 高黎明, 陈克龙. 青海湖流域瓦颜山湿地辐射平衡和地表反照率变化特征[J]. 冰川冻土, 2018, 40(6):1216-1222. ZHANG LL, GAO LM, CHEN KL. The variation characteristics of radiation balance and surface albedo in Wayanshan Wetland in the Qinghai Lake watershed[J]. Journal of Glaciology and Geocryology, 2018, 40(6):1216-1222(in Chinese).
    [18] LIU S, WANG PF, WANG X, CHEN J. Ecological insights into the elevational biogeography of antibiotic resistance genes in a pristine river:metagenomic analysis along the Yarlung Tsangpo River on the Tibetan Plateau[J]. Environmental Pollution, 2021, 286:117101.
    [19] COSTELLO AM, LIDSTROM ME. Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments[J]. Applied and Environmental Microbiology, 1999, 65(11):5066-5074.
    [20] 李晶, 刘昌岭, 吴能友, 贺行良, 许晓晴, 陈烨, 孟庆国. 海洋生境的甲烷好氧氧化作用对氧浓度的响应特征[J]. 海洋地质与第四纪地质, 2021, 41(3):44-53. LI J, LIU CL, WU NY, HE XL, XU XQ, CHEN Y, MENG QG. Response characteristics of aerobic methane oxidation to oxygen concentration in marine habitats[J]. Marine Geology & Quaternary Geology, 2021, 41(3):44-53(in Chinese).
    [21] CHEN SM, WAGHMODE TR, SUN RB, KURAMAE EE, HU CS, LIU BB. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization[J]. Microbiome, 2019, 7(1):136.
    [22] SCHLOSS PD, WESTCOTT SL, RYABIN T, HALL JR, HARTMANN M, HOLLISTER EB, LESNIEWSKI RA, OAKLEY BB, PARKS DH, ROBINSON CJ, SAHL JW, STRES B, THALLINGER GG, van HORN DJ, WEBER CF. Introducing mothur:open-source, platform- independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75(23):7537-7541.
    [23] WANG ZS, ZHU YQ, LI N, LIU H, ZHENG HJ, WANG WP, LIU Y. High-throughput sequencing-based analysis of the composition and diversity of endophytic bacterial community in seeds of saline-alkali tolerant rice[J]. Microbiological Research, 2021, 250:126794.
    [24] CHEN WQ, WANG JY, CHEN X, MENG ZX, XU R, DUOJI DZ, ZHANG JH, HE J, WANG ZG, CHEN J, LIU KX, HU TM, ZHANG YJ. Soil microbial network complexity predicts ecosystem function along elevation gradients on the Tibetan Plateau[J]. Soil Biology and Biochemistry, 2022, 172:108766-108777.
    [25] LI JB, SHEN ZH, LI CN, KOU YP, WANG YS, TU B, ZHANG SH, LI XZ. Stair-step pattern of soil bacterial diversity mainly driven by pH and vegetation types along the elevational gradients of Gongga Mountain, China[J]. Frontiers in Microbiology, 2018, 9:569.
    [26] WANG YS, LI CN, SHEN ZH, RUI JP, JIN DC, LI JB, LI XZ. Community assemblage of free-living diazotrophs along the elevational gradient of Mount Gongga[J]. Soil Ecology Letters, 2019, 1(3):136-146.
    [27] WANG JJ, HU A, MENG FF, ZHAO WQ, YANG YF, SOININEN J, SHEN J, ZHOU JZ. Embracing mountain microbiome and ecosystem functions under global change[J]. The New Phytologist, 2022, 234(6):1987-2002.
    [28] 何玉实, 何彤慧, 冯艳琼, 崔乔, 陈向全, 赵明涛, 邱文静. 鄂尔多斯台地盐沼滩涂湿地土壤细菌群落结构及特征[J]. 生态学报, 2022, 42(8):3345-3355. HE YS, HE TH, FENG YQ, CUI Q, CHEN XQ, ZHAO MT, QIU WJ. Characteristics and distribution of soil bacterial of salt marsh tidal wetland in Ordos Platform[J]. Acta Ecologica Sinica, 2022, 42(8):3345-3355(in Chinese).
    [29] 陈小弯, 田华川, 常军军, 陈礼强, 舒兴权, 冯秀祥. 杞麓湖中河河口表流湿地净化河道污染水的效果及其微生物群落特征[J]. 生态环境学报, 2022, 31(9):1865-1875. CHEN XW, TIAN HC, CHANG JJ, CHEN LQ, SHU XQ, FENG XX. Purification effect of surface-flow wetland in the middle river mouth of Qilu Lake and its microbial community characteristics[J]. Ecology and Environmental Sciences, 2022, 31(9):1865-1875(in Chinese).
    [30] LIU LL, WU YM, YIN MQ, MA XY, YU XN, GUO X, DU N, ELLER F, GUO WH. Soil salinity, not plant genotype or geographical distance, shapes soil microbial community of a reed wetland at a fine scale in the Yellow River Delta[J]. Science of the Total Environment, 2023, 856:159136.
    [31] 李敏, 闫伟. 海拔对乌拉山油松根围真菌群落结构的影响[J]. 菌物学报, 2019, 38(11):1992-2006. LI M, YAN W. Effect of altitude on the fungal community structure around the root of Pinus tabulaeformis in Wulashan[J]. Mycosystema, 2019, 38(11):1992-2006(in Chinese).
    [32] BAHRAM M, HILDEBRAND F, FORSLUND SK, ANDERSON JL, SOUDZILOVSKAIA NA, BODEGOM PM, BENGTSSON-PALME J, ANSLAN S, COELHO LP, HAREND H, HUERTA-CEPAS J, MEDEMA MH, MALTZ MR, MUNDRA S, OLSSON PA, PENT M, PÕLME S, SUNAGAWA S, RYBERG M, TEDERSOO L, BORK P. Structure and function of the global topsoil microbiome[J]. Nature, 2018, 560(7717):233-237.
    [33] 郑佳华, 赵萌莉, 王琪, 张峰, 张彬, 张军. 放牧和刈割对大针茅草原土壤微生物群落结构及多样性的影响[J]. 生态学报, 2022, 42(12):4998-5008. ZHENG JH, ZHAO ML, WANG Q, ZHANG F, ZHANG B, ZHANG J. Effects of management regime on soil microbial community structure and diversity of Stipa grandis grassland[J]. Acta Ecologica Sinica, 2022, 42(12):4998-5008(in Chinese).
    [34] 董莲华, 杨金水, 袁红莉. 氨氧化细菌的分子生态学研究进展[J]. 应用生态学报, 2008, 19(6):1381-1388. DONG LH, YANG JS, YUAN HL. Research advances in molecular ecology of ammonia oxidizing bacteria[J]. Chinese Journal of Applied Ecology, 2008, 19(6):1381-1388(in Chinese).
    [35] SUN XX, ZHAO J, ZHOU X, BEI QC, XIA WW, ZHAO BZ, ZHANG JB, JIA ZJ. Salt tolerance-based niche differentiation of soil ammonia oxidizers[J]. The ISME Journal, 2022, 16(2):412-422.
    [36] WANG F, CHE RX, DENG YC, WU YB, TANG LS, XU ZH, WANG WJ, LIU HB, CUI X. Air-drying and long time preservation of soil do not significantly impact microbial community composition and structure[J]. Soil Biology and Biochemistry, 2021, 157:108238.
    [37] HORZ HP, BARBROOK A, FIELD CB, BOHANNAN BJM. Ammonia-oxidizing bacteria respond to multifactorial global change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(42):15136-15141.
    [38] 宋凯伦, 汪丽娜, 林益寰, 周春火, 谭泽彬, 高阳慧, 王亚丽, 尹鑫. 赣江南昌段丰、枯水期氨氧化微生物群落结构分析[J]. 环境污染与防治, 2022, 44(11):1484-1490. SONG KL, WANG LN, LIN YH, ZHOU CH, TAN ZB, GAO YH, WANG YL, YIN X. Community structure analysis of ammonia-oxidizing microorganisms in Nanchang section of Ganjiang River during high and low water periods[J]. Environmental Pollution & Control, 2022, 44(11):1484-1490(in Chinese).
    [39] 蔡张杰, 崔丽娟, 李晶, 李伟, 雷茵茹. 低温条件下人工湿地氨氧化微生物的群落结构特征[J]. 江苏农业学报, 2020, 36(2):373-383. CAI ZJ, CUI LJ, LI J, LI W, LEI YR. Community structure characteristics of ammonia-oxidizing microorganisms in constructed wetland at low temperature[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(2):373-383(in Chinese).
    [40] 杨建强, 曹梦琪, 王袼, 胡姝娅, 王常慧. 内蒙古不同类型草地土壤氨氧化细菌和古菌的比较研究[J]. 草地学报, 2021, 29(12):2664-2669. YANG JQ, CAO MQ, WANG G, HU SY, WANG CH. The characteristics of ammonia-oxidizing bacteria and ammonia-oxidizing archaea in different grassland types of Inner Mongolia[J]. Acta Agrestia Sinica, 2021, 29(12):2664-2669(in Chinese).
    [41] HUANG XR, ZHAO J, SU J, JIA ZJ, SHI XL, WRIGHT AL, ZHU-BARKER X, JIANG XJ. Neutrophilic bacteria are responsible for autotrophic ammonia oxidation in an acidic forest soil[J]. Soil Biology and Biochemistry, 2018, 119:83-89.
    [42] 贠娟莉, 王艳芬, 张洪勋. 好氧甲烷氧化菌生态学研究进展[J]. 生态学报, 2013, 33(21):6774-6785. YUN JL, WANG YF, ZHANG HX. Ecology of aerobic methane oxidizing bacteria (methanotrophs)[J]. Acta Ecologica Sinica, 2013, 33(21):6774-6785(in Chinese).
    [43] STEPNIEWSKA Z, PYTLAK A, KUZNIAR A. Methanotrophic activity in Carboniferous coalbed rocks[J]. International Journal of Coal Geology, 2013, 106:1-10.
    [44] YUN JL, ZHUANG GQ, MA AZ, GUO HG, WANG YF, ZHANG HX. Community structure, abundance, and activity of methanotrophs in the zoige wetland of the Tibetan Plateau[J]. Microbial Ecology, 2012, 63(4):835-843.
    [45] 章妮, 陈克龙, 暴涵. 高寒湿地甲烷氧化菌群落对模拟增温的响应[J]. 应用与环境生物学报, 2022, 28(5):1232-1238. ZHANG N, CHEN KL, BAO H. Response of methane-oxidizing bacteria community to simulated warming in alpine wetland[J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(5):1232-1238(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王霞,陈克龙,王恒生,章妮,车子涵,祁闻,暴涵. 青海湖3种类型高寒湿地甲烷氧化菌群落特征[J]. 微生物学通报, 2023, 50(10): 4357-4371

复制
分享
文章指标
  • 点击次数:302
  • 下载次数: 900
  • HTML阅读次数: 676
  • 引用次数: 0
历史
  • 收稿日期:2023-02-07
  • 录用日期:2023-03-01
  • 在线发布日期: 2023-10-07
  • 出版日期: 2023-10-20
文章二维码