科微学术

微生物学通报

从宏基因组推测扎龙湿地未培养甲烷古菌Rice Cluster II的代谢途径与可能的盐碱适应性
作者:
基金项目:

国家自然科学基金(92251302,32070061,31971468)


Metagenomic analysis of metabolic pathways and possible saline-alkaline adaptation of uncultured methanogens of Rice Cluster Ⅱ in Zhalong wetland
Author:
  • LI Huiju

    LI Huiju

    Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Lingyan

    LI Lingyan

    State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIANG Hong

    LIANG Hong

    Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GAO Dawen

    GAO Dawen

    Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • DONG Xiuzhu

    DONG Xiuzhu

    State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [52]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    【背景】湿地是重要的甲烷排放源,因为其中栖息着各种产甲烷古菌。已知未培养甲烷古菌Rice Cluster II (RCII)类群广泛分布于低温酸性和北方泥炭藓湿地、淡水湿地及草本沼泽等环境,但它们在低温盐碱湿地中的分布及代谢途径尚未知。【目的】分析扎龙盐碱湿地未培养甲烷古菌RCII类群的多样性、推测产甲烷代谢途径及其潜在的盐碱适应机制。【方法】16S rRNA基因扩增子测序分析扎龙湿地土壤中甲烷古菌群组成;构建16S rRNA基因克隆文库分析扎龙湿地土壤RCII的多样性;宏基因组分析推测RCII古菌编码的产甲烷途径及与耐盐碱相关物质的合成基因。【结果】16S rRNA基因高通量测序发现未培养甲烷古菌的RCII类群占扎龙盐碱湿地总甲烷古菌的13.280%±0.019%;系统发育学分析表明该湿地的RCII由3个分支组成;宏基因组分析组装了2个优势的未培养RCII的基因组,均含完整的氢还原二氧化碳产甲烷途径的基因,并编码海藻糖的转运与合成基因。【结论】扎龙盐碱湿地土壤富含未培养RCII甲烷古菌,推测它们通过氢还原二氧化碳产甲烷,利用细胞内高的海藻糖适应盐碱环境。

    Abstract:

    [Background] Wetlands harbobring a variety of methane-producing archaea emit ample methane. The uncultured methanogens, Rice Cluster II (RCII), exist widely in cold acidic peatlands, freshwater lake wetlands, minerotrophic fens, and northern peat moss. However, the distribution and metabolic pathways of RCII in the low-temperature saline-alkaline wetlands remain unknown. [Objective] To investigate the diversity and infer the methanogenic pathways and potential adaptation mechanisms of RCII in saline-alkaline Zhalong wetland. [Methods] High-throughput sequencing of the 16S rRNA genes in the top layer of soil was performed to reveal the composition of methanogenic archaea. We established the 16S rRNA gene clone library to analyze the phylogenetic clusters of RCII. We then conducted metagenomic analysis to infer the methanogenic pathways and the possible saline-alkaline adaption mechanisms of the RCII in Zhalong wetland.[Results] The uncultured RCII methanogens accounted for 13.280%±0.019% of the total methanogenic archaea in Zhalong wetland and were clustered into three phylogenetic groups. Two metagenome-assembled genomes of RCII possessed the complete suite of genes involved in methanogenesis via reduction of carbon dioxide. Furthermore, the two RCII genomes contained the genes associated with the transport and synthesis of trehalose. [Conclusion] Abundant uncultured RCII methanogens inhabit the saline-alkaline Zhalong wetland, and they can produce methane by reducing carbon dioxide and use the compatible solute trehalose to adapt to the saline-alkaline environment.

    参考文献
    [1] INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC). Climate Change 2007:The Physical Science Basis[M]. Cambridge:Oxford Press, 2007.
    [2] 万忠娟, 于少鹏, 王海霞, 孙广友. 松嫩平原内陆盐碱湿地的类型特征及分布规律[J]. 湿地科学, 2003, 1(2):141-146. WAN ZJ, YU SP, WANG HX, SUN GY. The types and characteristics of inland saline-alkaline wetland in Songnen plain[J]. Wetland Science, 2003, 1(2):141-146(in Chinese).
    [3] 杨帆, 王志春, 肖烨. 冬季结冰灌溉对苏打盐碱土水盐变化的影响[J]. 地理科学, 2012, 32(10):1241-1246. YANG F, WANG ZC, XIAO Y. Effect of freezing water irrigation on the changes of soil water and salt in saline-sodic soil area[J]. Scientia Geographica Sinica, 2012, 32(10):1241-1246(in Chinese).
    [4] LIU FQ, ZHANG YP, LIANG H, GAO DW. Long-term harvesting of reeds affects greenhouse gas emissions and microbial functional genes in alkaline wetlands[J]. Water Research, 2019, 164:114936.
    [5] ZHANG YP, LIU FQ, LIANG H, GAO DW. Mediative mechanism of freezing/thawing on greenhouse gas emissions in an inland saline-alkaline wetland:a metagenomic analysis[J]. Microbial Ecology, 2022:1-12.
    [6] 班巧英, 刘廉宇, 李建政, 张立国. OLR对ABR沿程格室甲烷发酵特征的影响[J]. 环境科学学报, 2020, 40(6):2150-2156. BAN QY, LIU LY, LI JZ, ZHANG LG. Effect of OLR on methane fermentation of each compartment in ABR[J]. Acta Scientiae Circumstantiae, 2020, 40(6):2150-2156(in Chinese).
    [7] CONRAD R. Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments:a mini review[J]. Pedosphere, 2020, 30(1):25-39.
    [8] LEADBETTER JR, BREZNAK JA. Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes[J]. Applied and Environmental Microbiology, 1996, 62(10):3620-3631.
    [9] BRÄUER SL, BASILIKO N, SILJANEN HMP, ZINDER SH. Methanogenic archaea in peatlands[J]. FEMS Microbiology Letters, 2020, 367(20):fnaa172.
    [10] FERRY JG, KASTEAD KA. Methanogenesis[M]//Archaea. Washington DC:ASM Press, 2014:288-314.
    [11] FERRY JG. Enzymology of one-carbon metabolism in methanogenic pathways[J]. FEMS Microbiology Reviews, 1999, 23(1):13-38.
    [12] LANG K, SCHULDES J, KLINGL A, POEHLEIN A, DANIEL R, BRUNEA A. New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of "Candidatus methanoplasma termitum"[J]. Applied and Environmental Microbiology, 2015, 81(4):1338-1352.
    [13] MAYUMI D, MOCHIMARU H, TAMAKI H, YAMAMOTO K, YOSHIOKA H, SUZUKI Y, KAMAGATA Y, SAKATA S. Methane production from coal by a single methanogen[J]. Science, 2016, 354(6309):222-225.
    [14] ZHOU Z, ZHANG CJ, LIU PF, FU L, LASO-PÉREZ R, YANG L, BAI LP, LI J, YANG M, LIN JZ, WANG WD, WEGENER G, LI M, CHENG L. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species[J]. Nature, 2022, 601(7892):257-262.
    [15] LIU YQ, PRISCU JC, XIONG JB, CONRAD R, VICK-MAJORS T, CHU HY, HOU JZ. Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau[J]. FEMS Microbiology Ecology, 2016, 92(3):fiw033.
    [16] 任秘坊, 李凌燕, 陈琳, 邢婷婷, 刘勇勤, 东秀珠. 青藏高原三个盐碱湖的产甲烷菌群和产甲烷代谢途径分析[J]. 微生物学报, 2020, 60(1):161-171. REN MF, LI LY, CHEN L, XING TT, LIU YQ, DONG XZ. Methanogen communities and predominant methanogenic pathways in three saline-alkaline lakes on the Tibetan Plateau[J]. Acta Microbiologica Sinica, 2020, 60(1):161-171(in Chinese).
    [17] SOROKIN DY, MAKAROVA KS, ABBAS B, FERRER M, GOLYSHIN PN, GALINSKI EA, CIORDIA S, MENA MC, MERKEL AY, WOLF YI, van LOOSDRECHT MCM, KOONIN EV. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis[J]. Nature Microbiology, 2017, 2:17081.
    [18] SOROKIN DY, ABBAS B, GELEIJNSE M, PIMENOV NV, SUKHACHEVA MV, van LOOSDRECHT MCM. Methanogenesis at extremely haloalkaline conditions in the soda lakes of Kulunda Steppe (Altai, Russia)[J]. FEMS Microbiology Ecology, 2015, 91(4):fiv016.
    [19] KOTSYURBENKO OR, CHIN KJ, GLAGOLEV MV, STUBNER S, SIMANKOVA MV, NOZHEVNIKOVA AN, CONRAD R. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog[J]. Environmental Microbiology, 2004, 6(11):1159-1173.
    [20] YAVITT JB, YASHIRO E, CADILLO-QUIROZ H, ZINDER SH. Methanogen diversity and community composition in peatlands of the central to northern Appalachian Mountain region, North America[J]. Biogeochemistry, 2012, 109(1):117-131.
    [21] YE WJ, LIU XL, LIN SQ, TAN J, PAN JL, LI DT, YANG H. The vertical distribution of bacterial and archaeal communities in the water and sediment of Lake Taihu[J]. FEMS Microbiology Ecology, 2009, 70(2):263-276.
    [22] CADILLO-QUIROZ H, YASHIRO E, YAVITT JB, ZINDER SH. Characterization of the archaeal community in a minerotrophic fen and terminal restriction fragment length polymorphism-directed isolation of a novel hydrogenotrophic methanogen[J]. Applied and Environmental Microbiology, 2008, 74(7):2059-2068.
    [23] BASILIKO N, YAVITT JB, DEES PM, MERKEL SM. Methane biogeochemistry and methanogen communities in two northern peatland ecosystems, New York State[J]. Geomicrobiology Journal, 2003, 20(6):563-577.
    [24] KOCH K, KNOBLAUCH C, WAGNER D. Methanogenic community composition and anaerobic carbon turnover in submarine permafrost sediments of the Siberian Laptev Sea[J]. Environmental Microbiology, 2009, 11(3):657-668.
    [25] MONDAV R, WOODCROFT BJ, KIM EH, McCALLEY CK, HODGKINS SB, CRILL PM, CHANTON J, HURST GB, VerBERKMOES NC, SALESKA SR, HUGENHOLTZ P, RICH VI, TYSON GW. Discovery of a novel methanogen prevalent in thawing permafrost[J]. Nature Communications, 2014, 5:3212.
    [26] WANG WJ, LIANG H, LI F, SU HH, LI HJ, GAO DW. Water level of inland saline wetlands with implications for CO2 and CH4 fluxes during the autumn freeze-thaw period in Northeast China[J]. Environmental Science and Pollution Research, 2023, 30(17):50125-50133.
    [27] 李红艳, 章光新, 李绪谦, 高蕊, 邓春暖. 扎龙湿地水质净化机理分析[J].地理科学, 2012, 32(1):87-93. LI HY, ZHANG GX, LI XQ, GAO R, DENG CN. Analysis on water purification mechanism of Zhalong wetland[J]. Scientia Geographica Sinica, 2012, 32(1):87-93(in Chinese).
    [28] 王文锋, 罗金明, 王永洁, 高忠彦, 逄世良. 从小尺度探讨扎龙盐沼湿地的持水性特征[J]. 齐齐哈尔大学学报(自然科学版), 2010, 26(6)71-75. WANG WF, LUO JM, WANG YJ, GAO ZY, PANG SL. Water conservation function in Zhalong saline wetland at local scale[J]. Journal of Qiqihar University (Natural Science Edition), 2010, 26(6)71-75(in Chinese).
    [29] WEI SP, CUI HP, ZHANG YC, SU X, DONG HL, CHEN F, ZHU YH. Comparative evaluation of three archaeal primer pairs for exploring archaeal communities in deep-sea sediments and permafrost soils[J]. Extremophiles, 2019, 23(6):747-757.
    [30] PEI CX, MAO SY, CHENG YF, ZHU WY. Diversity, abundance and novel 16S rRNA gene sequences of methanogens in rumen liquid, solid and epithelium fractions of Jinnan cattle[J]. Animal, 2010, 4(1):20-29.
    [31] WRIGHT ADG, WILLIAMS AJ, WINDER B, CHRISTOPHERSEN CT, RODGERS SL, SMITH KD. Molecular diversity of rumen methanogens from sheep in western Australia[J]. Applied and Environmental Microbiology, 2004, 70(3):1263-1270.
    [32] KUMAR S, STECHER G, LI M, KNYAZ C, TAMURA K. MEGA X:molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6):1547-1549.
    [33] BOLGER AM, LOHSE M, USADEL B. Trimmomatic:a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15):2114-2120.
    [34] URITSKIY GV, DiRUGGIERO J, TAYLOR J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis[J]. Microbiome, 2018, 6(1):1-13.
    [35] LI DH, LIU CM, LUO RB, SADAKANE K, LAM TW. MEGAHIT:an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph[J]. Bioinformatics, 2015, 31(10):1674-1676.
    [36] ALNEBERG J, BJARNASON BS, de BRUIJN I, SCHIRMER M, QUICK J, IJAZ UZ, LAHTI L, LOMAN NJ, ANDERSSON AF, QUINCE C. Binning metagenomic contigs by coverage and composition[J]. Nature Methods, 2014, 11(11):1144-1146.
    [37] KANG DD, FROULA J, EGAN R, WANG Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities[J]. PeerJ, 2015, 3:e1165.
    [38] WU YW, SIMMONS BA, SINGER SW. MaxBin 2.0:an automated binning algorithm to recover genomes from multiple metagenomic datasets[J]. Bioinformatics, 2016, 32(4):605-607.
    [39] PARKS DH, CHUVOCHINA M, CHAUMEIL PA, RINKE C, MUSSIG AJ, HUGENHOLTZ P. A complete domain-to-species taxonomy for bacteria and archaea[J]. Nature Biotechnology, 2020, 38(9):1079-1086.
    [40] SEEMANN T. Prokka:rapid prokaryotic genome annotation[J]. Bioinformatics, 2014, 30(14):2068-2069.
    [41] ARAMAKI T, BLANC-MATHIEU R, ENDO H, OHKUBO K, KANEHISA M, GOTO S, OGATA H. KofamKOALA:KEGG Ortholog assignment based on profile HMM and adaptive score threshold[J]. Bioinformatics, 2020, 36(7):2251-2252.
    [42] THAUER RK, KASTER AK, SEEDORF H, BUCKEL W, HEDDERICH R. Methanogenic archaea:ecologically relevant differences in energy conservation[J]. Nature Reviews Microbiology, 2008, 6(8):579-591.
    [43] OREN A. Microbial life at high salt concentrations:phylogenetic and metabolic diversity[J]. Saline Systems, 2008, 4:2.
    [44] DING RT, YANG N, LIU JG. The osmoprotectant switch of potassium to compatible solutes in an extremely halophilic archaea Halorubrum kocurii 2020YC7[J]. Genes, 2022, 13(6):939.
    [45] OREN A. Bioenergetic aspects of halophilism[J]. Microbiology and Molecular Biology Reviews:MMBR, 1999, 63(2):334-348.
    [46] EPSTEIN W. The roles and regulation of potassium in bacteria[J]. Progress in nucleic acid research and molecular biology, 2003, 75:293-320.
    [47] YOUSSEF NH, SAVAGE-ASHLOCK KN, McCULLY AL, LUEDTKE B, SHAW EI, HOFF WD, ELSHAHED MS. Trehalose/2-sulfotrehalose biosynthesis and glycine-betaine uptake are widely spread mechanisms for osmoadaptation in the Halobacteriales[J]. The ISME Journal, 2014, 8(3):636-649.
    [48] GOH F, JEON YJ, BARROW K, NEILAN BA, BURNS BP. Osmoadaptive strategies of the archaeon Halococcus hamelinensis isolated from a hypersaline stromatolite environment[J]. Astrobiology, 2011, 11(6):529-536.
    [49] MARTIN DD, CIULLA RA, ROBERTS MF. Osmoadaptation in archaea[J]. Applied and Environmental Microbiology, 1999, 65(5):1815-1825.
    [50] CSONKA LN. Physiological and genetic responses of bacteria to osmotic stress[J]. Microbiological Reviews, 1989, 53(1):121-147.
    [51] DESMARAIS D, JABLONSKI PE, FEDARKO NS, ROBERTS MF. 2-sulfotrehalose, a novel osmolyte in haloalkaliphilic archaea[J]. Journal of Bacteriology, 1997, 179(10):3146-3153.
    [52] AVONCE N, MENDOZA-VARGAS A, MORETT E, ITURRIAGA G. Insights on the evolution of trehalose biosynthesis[J]. BMC Evolutionary Biology, 2006, 6(1):109.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李彗菊,李凌燕,梁红,高大文,东秀珠. 从宏基因组推测扎龙湿地未培养甲烷古菌Rice Cluster II的代谢途径与可能的盐碱适应性[J]. 微生物学通报, 2023, 50(10): 4343-4356

复制
分享
文章指标
  • 点击次数:296
  • 下载次数: 1153
  • HTML阅读次数: 829
  • 引用次数: 0
历史
  • 收稿日期:2023-03-25
  • 录用日期:2023-05-12
  • 在线发布日期: 2023-10-07
  • 出版日期: 2023-10-20
文章二维码