科微学术

微生物学通报

沙棘通过自主选择塑造根瘤内生微生物组
作者:
基金项目:

国家重点研发计划(2021YFD2201203);国家林业局公益性行业科研专项(201304409);北京市科技新星项目(2011033)


Hippophae rhamnoides shapes endophytic microbiome in root nodule by self-selection
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】解析植物微生物群落结构是利用微生物组工程强化植物抗生物和非生物胁迫水平、提高农林产品质量和品质的基础。固氮根瘤是沙棘具有抗旱、抗寒和抗贫瘠等多种优良生物性状的关键。【目的】比较分析沙棘根际土和根瘤内细菌群落结构的组成及影响因素,为揭示沙棘-弗兰克氏菌共生和植物-微生物互作协同抗逆机制提供理论基础。【方法】从辽宁、陕西和山西采集样品,通过16S rRNA基因V3–V4可变区的高通量测序技术,采用生物信息学方法比较分析沙棘根际土和根瘤内细菌群落组成和丰度差异,并探索土壤土理化性质对根际土细菌群落结构的影响。【结果】沙棘根际土和根瘤内的细菌群落均以放线菌门(Actinobacteria)和变形菌门(Proteobacteria)为主要优势菌门,且根瘤内弗兰克氏菌属(Frankia)为绝对优势菌属;根际土前10个优势菌门的丰度在三地样品间均存在显著差异,仅存在唯一共有的优势菌属(鞘氨醇单胞菌属,Sphingomonas),且前35个优势属中有27个属在三地间存在明显丰度差异;土壤pH和速效钾是沙棘根际土细菌群落多样性的主要影响因子;根瘤内优势门和属在三省份间存在高度的保守性,仅异根瘤菌属(Allorhizobium)存在显著丰度差异;受宿主选择的影响,根际土和根瘤内细菌多样性和丰富性存在不完全的统一性。【结论】沙棘根际土细菌群落多样性受土壤pH和速效钾的强烈影响,沙棘根瘤通过自宿主选择从根际土中筛选获得相对保守和稳定的细菌群落。

    Abstract:

    [Background] Revealing the microbiome structure of plants is critical for enhancing plant tolerance to biotic and abiotic stresses and improving the quality of agricultural and forestry products. The nitrogen-fixing nodules of Hippophae rhamnoides is the key to the tolerance to drought, cold, and barren soil. [Objective] To provide a theoretical basis for revealing the roles of H. rhamnoides-Frankia symbiosis and plant-microbiome interaction in plant tolerance to stress, we studied the structure and influencing factors of bacterial community in the rhizosphere soil and root nodules of H. rhamnoides. [Methods] The rhizosphere soil and root nodules of H. rhamnoides were collected from 3 sampling sites in Liaoning, Shaanxi, and Shanxi, and high-throughput sequencing was performed for the V3-V4 variable regions of the 16S rRNA gene. The bioinformatics tools were employed to compare the community structure and abundance of bacteria between the soil and nodule samples. Furthermore, the effects of soil physical and chemical properties on the bacterial community structure in rhizosphere soil were explored. [Results] Actinobacteria and Proteobacteria were the dominant phyla in the rhizosphere soil and root nodule, and Frankia was the dominant genus in the root nodule of H. rhamnoides. The three provinces showed significant differences in the abundance of the top 10 dominant phyla and 27 of the top 35 dominant genera in the rhizosphere soil, and they shared only one common dominant genus Sphingomonas. Soil pH and soluble potassium were the main factors affecting the bacterial diversity in rhizosphere soil of H. rhamnoides. The dominant phyla and genera in the root nodules were highly conserved among the three provinces, and only Allorhizobium had significant differences in abundance among the three provinces. The diversity and abundance of bacteria in rhizosphere soil and root nodules were not completely consistent.[Conclusion] The bacterial diversity in the rhizosphere soil of H. rhamnoides is strongly affected by soil pH and available potassium. The root nodules of H. rhamnoides assemble a conserved and stable microbiome by self-host selection of bacteria from the rhizosphere soil.

    参考文献
    [1] NAYLOR D, MCCLURE R, JANSSON J. Trends in microbial community composition and function by soil depth[J]. Microorganisms, 2022, 10(3): 540.
    [2] BAI B, LIU WD, QIU XY, ZHANG J, ZHANG JY, BAI Y. The root microbiome: community assembly and its contributions to plant fitness[J]. Journal of Integrative Plant Biology, 2022, 64(2): 230-243.
    [3] TRIVEDI P, LEACH JE, TRINGE SG, SA TM, SINGH BK. Plant-microbiome interactions: from community assembly to plant health[J]. Nature Reviews Microbiology, 2020, 18(11): 607-621.
    [4] BENDER FR, ALVES LC, da SILVA JFM, RIBEIRO RA, PAULI G, NOGUEIRA MA, HUNGRIA M. Microbiome of nodules and roots of soybean and common bean: searching for differences associated with contrasting performances in symbiotic nitrogen fixation[J]. International Journal of Molecular Sciences, 2022, 23(19): 12035.
    [5] MAYHOOD P, MIRZA BS. Soybean root nodule and rhizosphere microbiome: distribution of rhizobial and nonrhizobial endophytes[J]. Applied and Environmental Microbiology, 2021, 87(10): e02884-e02820.
    [6] SOARES R, TREJO J, LORITE MJ, FIGUEIRA E, SANJUÁN J, VIDEIRA E CASTRO I. Diversity, phylogeny and plant growth promotion traits of nodule associated bacteria isolated from Lotus parviflorus[J]. Microorganisms, 2020, 8(4): 499.
    [7] CARDOSO P, ALVES A, SILVEIRA P, SÁ C, FIDALGO C, FREITAS R, FIGUEIRA E. Bacteria from nodules of wild legume species: phylogenetic diversity, plant growth promotion abilities and osmotolerance[J]. Science of the Total Environment, 2018, 645: 1094-1102.
    [8] 张爱梅, 韩雪英, 孙坤, 张世虎, 孔维宝, 牛世全, 朱学泰. 高通量测序分析中国沙棘根瘤与根际土壤细菌多样性[J]. 草原与草坪, 2018, 38(2): 49-55. ZHANG AM, HAN XY, SUN K, ZHANG SH, KONG WB, NIU SQ, ZHU XT. Root nodules endophytic and rhizosphere soil bacteria diversity of Hippophae rhamnoidoes subsp. sinensis based on high-throughput sequencing[J]. Grassland and Turf, 2018, 38(2): 49-55 (in Chinese).
    [9] 李月. 药食两用沙棘的品质评价研究[D].北京: 北京协和医学院硕士学位论文, 2022. LI Y. Study on quality evaluation of Hippophae fructus for medicine and food[D]. Beijing: Master’s Thesis of Peking Union Medical College, 2022 (in Chinese).
    [10] CIESAROVÁ Z, MURKOVIC M, CEJPEK K, KREPS F, TOBOLKOVÁ B, KOPLÍK R, BELAJOVÁ E, KUKUROVÁ K, DAŠKO Ľ, PANOVSKÁ Z, REVENCO D, BURČOVÁ Z. Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review[J]. Food Research International (Ottawa, Ont), 2020, 133: 109170.
    [11] PESCE C, OSHONE R, HURST SG IV, KLEINER VA, TISA LS. Stable transformation of the Actinobacteria Frankia spp.[J]. Applied and Environmental Microbiology, 2019, 85(15): e00957-e00919.
    [12] WU ZF, CHEN HY, PAN Y, FENG H, FANG DM, YANG J, WANG YY, YANG J, SAHU SK, LIU JL, XING YE, WANG XL, LIU M, LUO XY, GAO P, LI LF, LIU ZJ, YANG HM, LIU X, XU X, et al. Genome of Hippophae rhamnoides provides insights into a conserved molecular mechanism in actinorhizal and rhizobial symbioses[J]. New Phytologist, 2022, 235(1): 276-291.
    [13] 樊梦颖, 张明明, 张情, 张春丽, 刘西平. 不同月份沙棘根瘤细菌群落结构特征的分析对比[J]. 西北林学院学报, 2020, 35(6): 160-167. FAN MY, ZHANG MM, ZHANG Q, ZHANG CL, LIU XP. Comparison of the characteristics of bacterial community in root nodules of Hippophae rhamnoides in different months[J]. Journal of Northwest Forestry University, 2020, 35(6): 160-167 (in Chinese).
    [14] 张爱梅, 吴菊艳, 韩雪英, 孔维宝. 沙棘根瘤内生细菌中抑菌促生菌株的筛选和鉴定[J]. 微生物学通报, 2019, 46(5): 1041-1051. ZHANG AM, WU JY, HAN XY, KONG WB. Screening and identification of antagonistic and plant-growth promoting endophytic bacteria from Seabuckthorn nodules[J]. Microbiology China, 2019, 46(5): 1041-1051 (in Chinese).
    [15] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. LU RK. Methods of Soil Agrochemical Analysis[M]. Beijing: China Agriculture Science and Technology Press, 2000 (in Chinese).
    [16] YANG C, LIU N, ZHANG YG. Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration[J]. Geoderma, 2019, 337: 444-452.
    [17] LIU J, HE XW, SUN JY, MA YC. A degeneration gradient of poplar trees contributes to the taxonomic, functional, and resistome diversity of bacterial communities in rhizosphere soils[J]. International Journal of Molecular Sciences, 2021, 22(7): 3438.
    [18] SCHÖN ME, MARTIJN J, VOSSEBERG J, KÖSTLBACHER S, ETTEMA TJG. The evolutionary origin of host association in the Rickettsiales[J]. Nature Microbiology, 2022, 7(8): 1189-1199.
    [19] PIWOWAREK K, LIPIŃSKA E, HAĆ-SZYMAŃCZUK E, KIELISZEK M, ŚCIBISZ I. Propionibacterium spp.-source of propionic acid, vitamin B12, and other metabolites important for the industry[J]. Applied Microbiology and Biotechnology, 2018, 102(2): 515-538.
    [20] IKBAL, PASSRICHA N, SAIFI SK, SIKKA VK, TUTEJA N. Multilegume biofertilizer: a dream- ScienceDirect[M]//SHARMA V, SALWAN R, AL-ANI LKT. Molecular Aspects of Plant Beneficial Microbes in Agriculture. Amsterdam: Elsevier Inc, 2020: 35-45 (in Netherlands).
    [21] MUKHERJEE A, BHOWMICK S, YADAV S, RASHID MM, CHOUHAN GK, VAISHYA JK, VERMA JP. Re-vitalizing of endophytic microbes for soil health management and plant protection[J]. 3 Biotech, 2021, 11(9): 399.
    [22] 王莉, 凌琪, 伍昌年, 李顺鹏, 蒋建东, 王敏. Hyphomicrobium sp. MAP-1菌株修复甲胺磷乙酰甲胺磷和水胺硫磷污染土壤的实验研究[J]. 农业环境科学学报, 2013, 32(1): 81-87. WANG L, LING Q, WU CN, LI SP, JIANG JD, WANG M. Bioremediation on the soil contaminated by methamidophos, acephate and isocarbophos by Hyphomicrobium sp. MAP-1[J]. Journal of Agro- Environment Science, 2013, 32(1): 81-87 (in Chinese).
    [23] GOSAI HB, PANSERIYA HZ, PATEL PG, PATEL AC, SHANKAR A, VARJANI S, DAVE BP. Exploring bacterial communities through metagenomics during bioremediation of polycyclic aromatic hydrocarbons from contaminated sediments[J]. Science of the Total Environment, 2022, 842: 156794.
    [24] SOHN SI, AHN JH, PANDIAN S, OH YJ, SHIN EK, KANG HJ, CHO WS, CHO YS, SHIN KS. Dynamics of bacterial c瑯祭孭?嵮???漠畳牴湲慵汣?潵晲?娠桩敮樠楴慨湥朠?????啳湰楨癥敲牥猠楡瑮祤???は?㈠??????????????????椠湩??桡楣湴敳猠敯???扲牯?孴??嵳?偡?乥??奡?卤丠??????????????????????乩??????楯癵敲牮獡楬琠祯??晍畯湬捥瑣極潬湡獲??慣湩摥?獣瑥牳攬猠猲‰爲攱猬瀠漲渲猨攱猱?漺映‵猵漷椷氮?浢楲挾牛漲漵牝朠慇湈楏獄浈獂孁?嵅????????刬???噕???????????偉??偍氬愠湂瑏??楁捂牏潕打椠潁洬攠??十瑒牉攠獍献?刱收獓瀭漲渳獓攠??癎潁氠????卲楧湥杮慩灣漠牳数??卥灲爠楲湥杧敩牯???ち????????? in the genus Frankia[J]. Microbial Ecology, 2010, 60(3): 487-495.
    [26] Ai C, Zhang SQ, Zhang X, Guo DD, Zhou W, Huang SM. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation[J]. Geoderma, 2018, 319: 156-166.
    [27] KLATT CG, LIU ZF, LUDWIG M, KÜHL M, JENSEN SI, BRYANT DA, WARD DM. Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring[J]. The ISME Journal, 2013, 7(9): 1775-1789.
    [28] WANG WJ, LIU AR, FU WT, PENG DL, WANG G, JI J, JIN C, GUAN CF. Tobacco-associated with Methylophilus sp. FP-6 enhances phytoremediation of benzophenone-3 through regulating soil microbial community, increasing photosynthetic capacity and maintaining redox homeostasis of plant[J]. Journal of Hazardous Materials, 2022, 431: 128588.
    [29] HAVLIN JL. Soil: fertility and nutrient management[M]//HAVLIN JL. Landscape and Land Capacity. Second edition. Boca Raton: CRC Press, 2020: 251-265.
    [30] VELÁZQUEZ E, SILVA LR, RAMÍREZ-BAHENA MH, PEIX A. Diversity of potassium-solubilizing microorganisms and their interactions with plants[M]// MEENA VS, MAURYA BR, VERMA JP, MEENA RS. Potassium Solubilizing Microorganisms for Sustainable Agriculture. New Delhi: Springer, 2016: 99-110.
    [31] POKHAREL A, MIRZA BS, DAWSON JO, HAHN D. Frankia populations in soil and root nodules of sympatrically grown Alnus taxa[J]. Microbial Ecology, 2011, 61(1): 92-100.
    [32] 魏继华, 李佳益, 刘宏, 张建国, 罗红梅, 何彩云. 沙棘根瘤内生菌株库构建与微生物多样性分析[J]. 浙江农林大学学报, 2022, 39(2): 356-363. WEI JH, LI JY, LIU H, ZHANG JG, LUO HM, HE CY. Construction of endophytic strain bank of seabuckthorn nodule and an analysis of microbial diversi
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

翟柯尧,刘娟,董玥,李亚涛,贺义才,孙海红,马玉超. 沙棘通过自主选择塑造根瘤内生微生物组[J]. 微生物学通报, 2023, 50(9): 3881-3898

复制
分享
文章指标
  • 点击次数:373
  • 下载次数: 877
  • HTML阅读次数: 391
  • 引用次数: 0
历史
  • 收稿日期:2022-12-10
  • 录用日期:2023-03-01
  • 在线发布日期: 2023-09-04
  • 出版日期: 2023-09-20
文章二维码