科微学术

微生物学通报

磁性纳米颗粒介导分离技术筛选土壤中多氯联苯降解菌及其降解特性
作者:
基金项目:

国家重点研发计划(2019YFC1803700);国家自然科学基金(42277022)


Magnetic nanoparticle-mediated isolation and degradation characterization of a PCB-degrading strain
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    【背景】磁性纳米颗粒介导分离(magnetic nanoparticle-mediated isolation, MMI)技术是近年来发展起来的一种无须底物标记就能从复杂菌群中分离活性功能微生物的方法,目前尚无研究报道该技术应用于难降解污染物3,3',4,4'-四氯联苯(3,3',4,4'-tetrachlorobiphenyl, PCB77)。【目的】从土壤中筛选PCB77活性降解菌并研究其污染物降解特性。【方法】利用磁性纳米颗粒(magnetic nanoparticles, MNPs)富集原位活性PCB77降解菌群,通过高通量测序分析细菌群落变化,经平板筛选得到PCB77降解菌,并研究其对多氯联苯和多溴联苯醚的降解特性。【结果】基于MMI技术获取的富集培养液能够高效地转化PCB77,与对照组相比底物降解效率从6%提升至79.3%,同时该富集培养液中细菌物种多样性显著降低,群落组成发生明显变化。从对照组和MMI处理组中分别筛选到PCB77降解菌红球菌CT2和类芽孢杆菌MT2,发现红球菌为对照组中唯一的优势物种,而MMI处理组的优势物种由红球菌和类芽孢杆菌共同组成。菌株MT2对PCB77具有优异的降解能力,唯一碳源条件下对PCB77的降解率高达65.2%,接近于富集菌群的降解效果,并显著高于菌株CT2 (26.3%)。同时,菌株MT2也对多种多氯联苯和多溴联苯醚表现出相对更好的降解效果。【结论】通过MMI技术有效富集出PCB77的高效降解菌群,并从中筛选到多氯联苯高效降解菌Paenibacillus sp. MT2,为发展高效的多氯联苯污染土壤生物修复技术提供了理论参考。

    Abstract:

    [Background] Magnetic nanoparticle-mediated isolation (MMI) is a culture-independent approach for identifying active degraders from complex microbial communities. However, there are few studies about the MMI-based identification of active bacteria involved in the degradation of recalcitrant 3,3',4,4'-tetrachlorobiphenyl (PCB77). [Objective] To isolate active PCB77 degraders from soil and assess the pollutant degradation capacity. [Methods] Magnetic nanoparticles (MNPs) were used to enrich the active PCB77 degraders in soil. The change in bacterial community composition was determined by high-throughput sequencing. A PCB77 degrader was isolated from MNP-enriched culture, and its performance of degrading polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) was assessed. [Results] The MNP-enriched culture was capable of degrading PCB77 with high efficiency compared with the control, which increased from 6% to 79.3%. The treatment with MNPs decreased the bacterial diversity and changed the community composition. PCB-degrading Rhodococcus sp. CT2 and Paenibacillus sp. MT2 were isolated from the control and MMI culture, respectively. Rhodococcus was dominant in the control group, while the dominant degraders included both Rhodococcus and Paenibacillus in the MMI group. The strain MT2 degraded 65.2% of PCB77 serving as the sole carbon source, and this degradation rate was close to that in MNP-enriched culture and significantly higher than that (26.3%) of strain CT2 under the same condition. In addition, the performance of Paenibacillus sp. MT2 in degrading PCBs and PBDEs was better than that of Rhodococcus sp. CT2. [Conclusion] MMI is a powerful approach to enrich active PCB77 degraders from complex microbial communities, with which Paenibacillus sp. MT2 having high PCB degradation efficiency was isolated. The study lays a theoretical basis for developing efficient approaches to remediate the soil contaminated by PCBs.

    参考文献
    [1] PIEPER DH. Aerobic degradation of polychlorinated biphenyls[J]. Applied Microbiology and Biotechnology, 2005, 67(2): 170-191.
    [2] WANG SQ, CHNG KR, WILM A, ZHAO SY, YANG KL, NAGARAJAN N, HE JZ. Genomic characterization of three unique Dehalococcoides that respire on persistent polychlorinated biphenyls[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(33): 12103-12108.
    [3] PATHIRAJA G, EGODAWATTA P, GOONETILLEKE A, TE’O VSJ. Solubilization and degradation of polychlorinated biphenyls (PCBs) by naturally occurring facultative anaerobic bacteria[J]. Science of the Total Environment, 2019, 651: 2197-2207.
    [4] SUN S, XIE SX, CHEN H, CHENG YB, SHI Y, QIN X, DAI SY, ZHANG XY, YUAN JS. Genomic and molecular mechanisms for efficient biodegradation of aromatic dye[J]. Journal of Hazardous Materials, 2016, 302: 286-295.
    [5] SU XM, LI S, CAI JF, XIAO YY, TAO LQ, HASHMI MZ, LIN HJ, CHEN JR, MEI RW, SUN FQ. Aerobic degradation of 3,3',4,4'-tetrachlorobiphenyl by a resuscitated strain Castellaniella sp. SPC4: kinetics model and pathway for biodegradation[J]. Science of the Total Environment, 2019, 688: 917-925.
    [6] AHMED M, FOCHT DD. Degradation of polychlorinated biphenyls by two species of Achromobacter[J]. Canadian Journal of Microbiology, 1973, 19(1): 47-52.
    [7] WANG XM, TENG Y, LUO YM, DICK RP. Biodegradation of 3,3',4,4'-tetrachlorobiphenyl by Sinorhizobium meliloti NM[J]. Bioresource Technology, 2016, 201: 261-268.
    [8] MEGGO RE, SCHNOOR JL, HU DF. Dechlorination of PCBs in the rhizosphere of switchgrass and poplar[J]. Environmental Pollution, 2013, 178: 312-321.
    [9] LIANG Y, MEGGO R, HU DF, SCHNOOR JL, MATTES TE. Enhanced polychlorinated biphenyl removal in a switchgrass rhizosphere by bioaugmentation with Burkholderia xenovorans LB400[J]. Ecological Engineering, 2014, 71: 215-222.
    [10] LIN Z, XU YF, ZHEN Z, FU Y, LIU YQ, LI WY, LUO CL, DING AZ, ZHANG DY. Application and reactivation of magnetic nanoparticles in Microcystis aeruginosa harvesting[J]. Bioresource Technology, 2015, 190: 82-88.
    [11] ZHANG DY, BERRY JP, ZHU D, WANG Y, CHEN Y, JIANG B, HUANG S, LANGFORD H, LI GH, DAVISON PA, XU J, ARIES E, HUANG WE. Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community[J]. The ISME Journal, 2015, 9(3): 603-614.
    [12] WANG XZ, ZHAO XH, LI HB, JIA JL, LIU YQ, EJENAVI O, DING AZ, SUN YJ, ZHANG DY. Separating and characterizing functional alkane degraders from crude-oil-contaminated sites via magnetic nanoparticle-mediated isolation[J]. Research in Microbiology, 2016, 167(9/10): 731-744.
    [13] 荣楠, 张建伟, 包远远, 何世颖, 冯有智, 林先贵. 基于磁性纳米颗粒分选的土壤活性纤维素降解微生物富集研究[J]. 土壤学报, 2022. 59(5): 1457-1468. RONG N, ZHANG JW, BAO YY, HE SY, FENG YZ, LIN XG. The responses of active cellulose-degrading bacterial community to different fertilization in paddy soils as revealed by magnetic nanoparticle-mediated isolation method[J]. Acta Pedologica Sinica, 2022, 59(5): 1457-1468 (in Chinese).
    [14] ZENG J, LIN XG, ZHANG J, LI XZ. Isolation of polycyclic aromatic hydrocarbons (PAHs)-degrading Mycobacterium spp. and the degradation in soil[J]. Journal of Hazardous Materials, 2010, 183(1/2/3): 718-723.
    [15] TAMURA K, STECHER G and KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021. 38(7): 3022-3027.
    [16] AFZAL S, SINGH NK. Effect of zinc and iron oxide nanoparticles on plant physiology, seed quality and microbial community structure in a rice-soil-microbial ecosystem[J]. Environmental Pollution, 2022, 314: 120224.
    [17] LI JB, LUO CL, ZHANG G, ZHANG DY. Coupling magnetic-nanoparticle mediated isolation (MMI) and stable isotope probing (SIP) for identifying and isolating the active microbes involved in phenanthrene degradation in wastewater with higher resolution and accuracy[J]. Water Research, 2018, 144: 226-234.
    [18] WAGNER-DÖBLER I, BENNASAR A, VANCANNEYT M, STRÖMPL C, BRÜMMER I, EICHNER C, GRAMMEL I, MOORE ER. Microcosm enrichment of biphenyl-degrading microbial communities from soils and sediments[J]. Applied and Environmental Microbiology, 1998, 64(8): 3014-3022.
    [19] SETO M, KIMBARA K, SHIMURA M, HATTA T, FUKUDA M, YANO K. A novel transformation of polychlorinated biphenyls by Rhodococcus sp. strain RHA1[J]. Applied and Environmental Microbiology, 1995, 61(9): 3353-3358.
    [20] BOPP LH. Degradation of highly chlorinated PCBs by Pseudomonas strain LB400[J]. Journal of Industrial Microbiology, 1986, 1(1): 23-29.
    [21] UHLIK O, JECNA K, MACKOVA M, VLCEK C, HROUDOVA M, DEMNEROVA K, PACES V, MACEK T. Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing[J]. Applied and Environmental Microbiology, 2009, 75(20): 6471-6477.
    [22] LEE TK, LEE J, SUL WJ, IWAI S, CHAI BL, TIEDJE JM, PARK J. Novel biphenyl-oxidizing bacteria and dioxygenase genes from a Korean tidal mudflat[J]. Applied and Environmental Microbiology, 2011, 77(11): 3888-3891.
    [23] OUYANG XF, YIN H, YU XL, GUO ZY, ZHU MH, LU GN, DANG Z. Enhanced bioremediation of 2,3',4,4',5-pentachlorodiphenyl by consortium GYB1 immobilized on sodium alginate-biochar[J]. Science of the Total Environment, 2021, 788: 147774.
    [24] LI AL, CHEN KZ, LI B, LIANG P, SHEN CF. Biphenyl-degrading bacteria isolation with laser induced visualized ejection separation technology and traditional colony sorting[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 109(3): 571-576.
    [25] WITTICH RM, WOLFF P. Growth of the genetically engineered strain Cupriavidus necator RW112 with chlorobenzoates and technical chlorobiphenyls[J]. Microbiology (Reading, England), 2007, 153(Pt 1): 186-195.
    [26] ABBEY AM, BEAUDETTE LA, LEE H, TREVORS JT. Polychlorinated biphenyl (PCB) degradation and persistence of a gfp-marked Ralstonia eutropha H850 in PCB-contaminated soil[J]. Applied Microbiology and Biotechnology, 2003, 63(2): 222-230.
    [27] ZHANG Z, PENG HR, YANG DC, ZHANG GQ, ZHANG JL, JU F. Polyvinyl chloride degradation by a bacterium isolated from the gut of insect larvae[J]. Nature Communications, 2022, 13: 5360.
    [28] 徐丰俊, 刘泽钒, 彭睿琪, 张逸岚, 沈超峰. 单细胞水平微流体技术筛选北极沉积物中的联苯降解菌[J]. 环境科学学报, 2022, 42(9): 1-8. XU FJ, LIU ZF, PENG RQ, ZHANG YL, SHEN CF. Isolation of biphenyl-degrading bacteria in Arctic sediments by single-cell level isolation of microfluidics (SLIM) technology[J]. Acta Scientiae Circumstantiae, 2022, 42(9): 1-8 (in Chinese).
    [29] SAKAI M, EZAKI S, SUZUKI N, KURANE R. Isolation and characterization of a novel polychlorinated biphenyl-degrading bacterium, Paenibacillus sp. KBC101[J]. Applied Microbiology and Biotechnology, 2005, 68(1): 111-116.
    [30] 李方卉, 徐莉, 张腾昊, 陈雄, 张振, 李伟明, 李辉信, 胡锋. 一株PCBs降解菌的降解特性及发酵条件优化[J]. 微生物学通报, 2014, 41(7): 1299-1307. LI FH, XU L, ZHANG TH, CHEN X, ZHANG Z, LI WM, LI HX, HU F. Degradation characteristics and fermentation conditions optimization of a PCBs-degrading strain[J]. Microbiology China, 2014, 41(7): 1299-1307 (in Chinese).
    [31] 蔡慧, 郑家传, 史广宇, 徐嘉玥, 何理, 施维林. 一株多氯联苯降解菌的筛选鉴定及降解性能研究[J]. 环境科学学报, 2016, 36(4): 1219-1225. CAI H, ZHENG JC, SHI GY, XU JY, HE L, SHI WL. Isolation, identification and characterization of a PCB77-degrading strain[J]. Acta Scientiae Circumstantiae, 2016, 36(4): 1219-1225 (in Chinese).
    [32] IWASAKI T, TAKEDA H, MIYAUCHI K, YAMADA T, MASAI EJ, FUKUDA M. Characterization of two biphenyl dioxygenases for biphenyl/PCB degradation in a PCB degrader, Rhodococcus sp. strain RHA1[J]. Bioscience, Biotechnology, and Biochemistry, 2007, 71(4): 993-1002.
    [33] FURUSAWA Y, NAGARAJAN V, TANOKURA M, MASAI EJ, FUKUDA M, SENDA T. Crystal structure of the terminal oxygenase component of biphenyl dioxygenase derived from Rhodococcus sp. strain RHA1[J]. Journal of Molecular Biology, 2004, 342(3): 1041-1052.
    [34] MOHAMMADI M, VIGER JF, KUMAR P, BARRIAULT D, BOLIN JT, SYLVESTRE M. Retuning Rieske-type oxygenases to expand substrate range[J]. The Journal of Biological Chemistry, 2011, 286(31): 27612-27621.
    [35] LI JD, MIN J, WANG Y, CHEN WW, KONG YC, GUO TY, MAHTO JK, SYLVESTRE M, HU XK. Engineering Burkholderia xenovorans LB400 BphA through site-directed mutagenesis at position 283[J]. Applied and Environmental Microbiology, 2020, 86(19): e01040-e01020.
    [36] HARA T, TAKATSUKA Y, NAKATA E, MORII T. Augmentation of an engineered bacterial strain potentially improves the cleanup of PCB water pollution[J]. Microbiology Spectrum, 2021, 9(3): e0192621.
    [37] ROBROCK KR, COELHAN M, SEDLAK DL, ALVAREZ-COHENT L. Aerobic biotransformation of polybrominated diphenyl ethers (PBDEs) by bacterial isolates[J]. Environmental Science & Technology, 2009, 43(15): 5705-5711.
    [38] ROBROCK KR, MOHN WW, ELTIS LD, ALVAREZ-COHEN L. Biphenyl and ethylbenzene dioxygenases of Rhodococcus jostii RHA1 transform PBDEs[J]. Biotechnology and Bioengineering, 2011, 108(2): 313-321.
    [39] ZENG J, ZHU QH, WU YC, CHEN H, LIN XG. Characterization of a polycyclic aromatic ring-hydroxylation dioxygenase from Mycobacterium sp. NJS-P[J]. Chemosphere, 2017, 185: 67-74.
    相似文献
    引证文献
引用本文

朋婷婷,项兴佳,冯有智,何世颖,吴宇澄,张锋,曾军,林先贵. 磁性纳米颗粒介导分离技术筛选土壤中多氯联苯降解菌及其降解特性[J]. 微生物学通报, 2023, 50(9): 3771-3783

复制
分享
文章指标
  • 点击次数:389
  • 下载次数: 960
  • HTML阅读次数: 684
  • 引用次数: 0
历史
  • 收稿日期:2022-12-16
  • 录用日期:2022-12-27
  • 在线发布日期: 2023-09-04
  • 出版日期: 2023-09-20
文章二维码