科微学术

微生物学通报

烟曲霉黑色素的研究进展
作者:
基金项目:

国家自然科学基金(82172293, 81971914)


Research progress in melanins of Aspergillus fumigatus
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [79]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    烟曲霉(Aspergillus fumigatus)是一种分布于世界各地的腐生真菌,属于人类临床常见的三大机会性致病真菌之一,是侵袭性曲霉菌病的主要病原菌。烟曲霉可以产生DHN-黑色素(dihydroxynaphthalene melanin)和脓黑素(pyomelanin)这2种类型黑色素。本综述介绍烟曲霉黑色素产生的遗传代谢途径、功能以及与宿主免疫系统相互作用的最新认识,有助于更好地理解烟曲霉的病理生理特征,为烟曲霉感染快速诊断技术和新型抗真菌药物的研发提供理论依据。

    Abstract:

    Aspergillus fumigatus is a saprophytic fungus with worldwide distribution and one of the three most common opportunistic pathogenic fungi infecting human in clinical practice. It is the main pathogen of invasive aspergillosis. A. fumigatus can produce two types of melanins: dihydroxynaphthalene melanin (DHN-melanin) and pyomelanin. We introduce the latest progress in the melanins of A. fumigatus in terms of the production pathways, functions, and interactions with the host immune system. This review aims to deepen our understanding of the pathophysiological features of A. fumigatus and provide a theoretical basis for the rapid diagnosis of A. fumigatus infection and the development of antifungal drugs.

    参考文献
    [1] 简勇. 烟曲霉菌中的黑色素合酶细胞定位机制的探索[D]. 南昌:南昌大学硕士学位论文, 2020. JIAN Y. Study on the localization mechanism of melanocytes in Aspergillus fumigatus[D]. Nanchang:Master's Thesis of Nanchang University, 2020(in Chinese).
    [2] STRICKLAND AB, SHI MQ. Mechanisms of fungal dissemination[J]. Cellular and Molecular Life Sciences, 2021, 78(7):3219-3238.
    [3] LATGÉ JP. Aspergillus fumigatus and aspergillosis[J]. Clinical Microbiology Reviews, 1999, 12(2):310-350.
    [4] van de VEERDONK FL, GRESNIGT MS, ROMANI L, NETEA MG, LATGÉ JP. Aspergillus fumigatus morphology and dynamic host interactions[J]. Nature Reviews Microbiology, 2017, 15(11):661-674.
    [5] BROWN GD, DENNING DW, GOW NAR, LEVITZ SM, NETEA MG, WHITE TC. Hidden killers:human fungal infections[J]. Science Translational Medicine, 2012, 4(165):165rv13.
    [6] BURKHART CG, BURKHART CN. The mole theory:primary function of melanocytes and melanin may be antimicrobial defense and immunomodulation (not solar protection)[J]. International Journal of Dermatology, 2005, 44(4):340-342.
    [7] 宋缘, 刘敬, 陈积红, 李文建, 胡伟, 刘璐. 真菌黑色素辐射防护作用综述[J]. 辐射研究与辐射工艺学报, 2016, 34(6):1-6. SONG Y, LIU J, CHEN JH, LI WJ, HU W, LIU L. Progress in fungi melanin radioprotection[J]. Journal of Radiation Research and Radiation Processing, 2016, 34(6):1-6(in Chinese).
    [8] CORDERO RJB, CASADEVALL A. Melanin[J]. Current Biology:CB, 2020, 30(4):R142-R143.
    [9] HEINEKAMP T, THYWIßEN A, MACHELEIDT J, KELLER S, VALIANTE V, BRAKHAGE AA. Aspergillus fumigatus melanins:interference with the host endocytosis pathway and impact on virulence[J]. Frontiers in Microbiology, 2013, 3:440.
    [10] PEREZ-CUESTA U, APARICIO-FERNANDEZ L, GURUCEAGA X, MARTIN-SOUTO L, ABAD-DIAZ-DE-CERIO A, ANTORAN A, BULDAIN I, HERNANDO FL, RAMIREZ-GARCIA A, REMENTERIA A. Melanin and pyomelanin in Aspergillus fumigatus:from its genetics to host interaction[J]. International Microbiology, 2020, 23(1):55-63.
    [11] SMITH DFQ, CASADEVALL A. The role of melanin in fungal pathogenesis for animal hosts[M]//Fungal Physiology and Immunopathogenesis. Cham:Springer International Publishing, 2019:1-30.
    [12] DAI BD, XU YX, GAO N, CHEN JY. Wor1-regulated ferroxidases contribute to pigment formation in opaque cells of Candida albicans[J]. FEBS Open Bio, 2021, 11(3):598-621.
    [13] DAI BD, XU YX, WU HY, CHEN JY. Rim101-upregulated Fets contribute to dark pigment formation in gray cells of Candida albicans[J]. Acta Biochimica et Biophysica Sinica, 2021, 53(12):1723-1730.
    [14] LEE D, JANG EH, LEE M, KIM SW, LEE Y, LEE KT, BAHN YS. Unraveling melanin biosynthesis and signaling networks in Cryptococcus neoformans[J]. mBio, 2019, 10(5):e02267-e02219.
    [15] TSAI HF, WHEELER MH, CHANG YC, KWON-CHUNG KJ. A developmentally regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus[J]. Journal of Bacteriology, 1999, 181(20):6469-6477.
    [16] LANGFELDER K, JAHN B, GEHRINGER H, SCHMIDT A, WANNER G, BRAKHAGE AA. Identification of a polyketide synthase gene (pksP) of Aspergillus fumigatus involved in conidial pigment biosynthesis and virulence[J]. Medical Microbiology and Immunology, 1998, 187(2):79-89.
    [17] NAMBU N, TSAI HF, CHANG YC, KWON-CHUNG KJ, YOSHIDA T, TANAKA N, TOMODA H, EBIZUKA Y, FUJII I. Novel angular naphthopyrone formation by Arp1p dehydratase involved in Aspergillus fumigatus melanin biosynthesis[J]. Environmental Microbiology Reports, 2021, 13(6):822-829.
    [18] LIEBMANN B, MÜLLER M, BRAUN A, BRAKHAGE AA. The cyclic AMP-dependent protein kinase a network regulates development and virulence in Aspergillus fumigatus[J]. Infection and Immunity, 2004, 72(9):5193-5203.
    [19] BRAKHAGE AA, LIEBMANN B. Aspergillus fumigatus conidial pigment and cAMP signal transduction:significance for virulence[J]. Medical Mycology, 2005, 43(Supplement_1):S75-S82.
    [20] GROSSE C, HEINEKAMP T, KNIEMEYER O, GEHRKE A, BRAKHAGE AA. Protein kinase a regulates growth, sporulation, and pigment formation in Aspergillus fumigatus[J]. Applied and Environmental Microbiology, 2008, 74(15):4923-4933.
    [21] KIM Y, LEE MW, JUN SC, CHOI YH, YU JH, SHIN KS. RgsD negatively controls development, toxigenesis, stress response, and virulence in Aspergillus fumigatus[J]. Scientific Reports, 2019, 9:811.
    [22] PEARSON G, ROBINSON F, BEERS GIBSON T, XU BG, KARANDIKAR M, BERMAN K, COBB MH. Mitogen-activated protein (MAP) kinase pathways:regulation and physiological functions[J]. Endocrine Reviews, 2001, 22(2):153-183.
    [23] MANFIOLLI AO, SIQUEIRA FS, dos REIS TF, van DIJCK P, SCHREVENS S, HOEFGEN S, FÖGE M, STRAßBURGER M, de ASSIS LJ, HEINEKAMP T, ROCHA MC, JANEVSKA S, BRAKHAGE AA, MALAVAZI I, GOLDMAN GH, VALIANTE V. Mitogen-activated protein kinase cross-talk interaction modulates the production of melanins in Aspergillus fumigatus[J]. mBio, 2019, 10(2):e00215-e00219.
    [24] VALIANTE V, BALDIN C, HORTSCHANSKY P, JAIN R, THYWIßEN A, STRAßBURGER M, SHELEST E, HEINEKAMP T, BRAKHAGE AA. The Aspergillus fumigatus conidial melanin production is regulated by the bifunctional bHLH DevR and MADS-box RlmA transcription factors[J]. Molecular Microbiology, 2016, 102(2):321-335.
    [25] da COSTA FILHO AP, BRANCINI GTP, ALVES de CASTRO P, VALERO C, ALVES FERREIRA FILHO J, SILVA LP, ROCHA MC, MALAVAZI I, de MORAES PONTES JG, FILL T, SILVA RN, ALMEIDA F, STEENWYK JL, ROKAS A, dos REIS TF, RIES LNA, GOLDMAN GH. Aspergillus fumigatus G-protein coupled receptors GprM and GprJ are important for the regulation of the cell wall integrity pathway, secondary metabolite production, and virulence[J]. mBio, 2020, 11(5):e02458-e02420.
    [26] IGBALAJOBI OA, YU JH, SHIN KS. Characterization of the rax1 gene encoding a putative regulator of G protein signaling in Aspergillus fumigatus[J]. Biochemical and Biophysical Research Communications, 2017, 487(2):426-432.
    [27] HE C, WEI Q, XU J, CAI RH, KONG QT, CHEN PY, LU L, SANG H. bHLH transcription factor EcdR controls conidia production, pigmentation and virulence in Aspergillus fumigatus[J]. Fungal Genetics and Biology, 2023, 164:103751.
    [28] SCHMALER-RIPCKE J, SUGAREVA V, GEBHARDT P, WINKLER R, KNIEMEYER O, HEINEKAMP T, BRAKHAGE AA. Production of pyomelanin, a second type of melanin, via the tyrosine degradation pathway in Aspergillus fumigatus[J]. Applied and Environmental Microbiology, 2009, 75(2):493-503.
    [29] KELLER S, MACHELEIDT J, SCHERLACH K, SCHMALER-RIPCKE J, JACOBSEN ID, HEINEKAMP T, BRAKHAGE AA. Pyomelanin formation in Aspergillus fumigatus requires HmgX and the transcriptional activator HmgR but is dispensable for virulence[J]. PLoS One, 2011, 6(10):e26604.
    [30] GOW NAR, LATGE JP, MUNRO CA. The fungal cell wall:structure, biosynthesis, and function[J]. Microbiology Spectrum, 2017, 5(3).
    [31] FULLER KK, CRAMER RA, ZEGANS ME, DUNLAP JC, LOROS JJ. Aspergillus fumigatus photobiology illuminates the marked heterogeneity between isolates[J]. mBio, 2016, 7(5):e01517-e01516.
    [32] BLACHOWICZ A, RAFFA N, BOK JW, CHOERA T, KNOX B, LIM FY, HUTTENLOCHER A, WANG CCC, VENKATESWARAN K, KELLER NP. Contributions of spore secondary metabolites to UV-C protection and virulence vary in different Aspergillus fumigatus strains[J]. mBio, 2020, 11(1):e03415-e03419.
    [33] FERLING I, DAN DUNN J, FERLING A, SOLDATI T, HILLMANN F. Conidial melanin of the human-pathogenic fungus Aspergillus fumigatus disrupts cell autonomous defenses in amoebae[J]. mBio, 2020, 11(3):e00862-e00820.
    [34] HILLMANN F, NOVOHRADSKÁ S, MATTERN DJ, FORBERGER T, HEINEKAMP T, WESTERMANN M, WINCKLER T, BRAKHAGE AA. Virulence determinants of the human pathogenic fungus Aspergillus fumigatus protect against soil amoeba predation[J]. Environmental Microbiology, 2015, 17(8):2858-2869.
    [35] PIHET M, VANDEPUTTE P, TRONCHIN G, RENIER G, SAULNIER P, GEORGEAULT S, MALLET R, CHABASSE D, SYMOENS F, BOUCHARA JP. Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia[J]. BMC Microbiology, 2009, 9:177.
    [36] VALSECCHI I, DUPRES V, MICHEL JP, DUCHATEAU M, MATONDO M, CHAMILOS G, SAVEANU C, GUIJARRO JI, AIMANIANDA V, LAFONT F, LATGÉ JP, BEAUVAIS A. The puzzling construction of the conidial outer layer of Aspergillus fumigatus[J]. Cellular Microbiology, 2019, 21(5):e12994.
    [37] BAYRY J, BEAUSSART A, DUFRÊNE YF, SHARMA M, BANSAL K, KNIEMEYER O, AIMANIANDA V, BRAKHAGE AA, KAVERI SV, KWON-CHUNG KJ, LATGÉ JP, BEAUVAIS A. Surface structure characterization of Aspergillus fumigatus conidia mutated in the melanin synthesis pathway and their human cellular immune response[J]. Infection and Immunity, 2014, 82(8):3141-3153.
    [38] AMIN S, THYWISSEN A, HEINEKAMP T, SALUZ HP, BRAKHAGE AA. Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells[J]. International Journal of Medical Microbiology, 2014, 304(5/6):626-636.
    [39] 徐赤宇, 吴建华, 温海, 陈江汉, 徐红, 孟玉景, 李小英. 纤连蛋白与烟曲霉分生孢子相互黏附作用的初步研究[J]. 临床皮肤科杂志, 2003, 32(2):61-64. XU CY, WU JH, WEN H, CHEN JH, XU H, MENG YJ, LI XY. Preliminary study on the interaction of adhesion between fibronectin and Aspergillus fumigatus conidia[J]. Journal of Clinical Dermatology, 2003, 32(2):61-64(in Chinese).
    [40] XIAO X, LI Y, LAN Y, ZHANG J, HE Y, CAI WY, CHEN ZW, XI LY, ZHANG JM. Deletion of pksA attenuates the melanogenesis, growth and sporulation ability and causes increased sensitivity to stress response and antifungal drugs in the human pathogenic fungus Fonsecaea monophora[J]. Microbiological Research, 2021, 244:126668.
    [41] GUAN MQ, YAO L, ZHEN Y, SONG Y, CUI Y, LI SS. Melanin of Sporothrix globosa affects the function of THP-1 macrophages and modulates the expression of TLR2 and TLR4[J]. Microbial Pathogenesis, 2021, 159:105158.
    [42] PINTO L, GRANJA LFZ, de ALMEIDA MA, ALVIANO DS, da SILVA MH, EJZEMBERG R, ROZENTAL S, ALVIANO CS. Melanin particles isolated from the fungus Fonsecaea pedrosoi activates the human complement system[J]. Memórias Do Instituto Oswaldo Cruz, 2018, 113(8):e180120.
    [43] STEINERT M, ENGELHARD H, FLÜGEL M, WINTERMEYER E, HACKER J. The Lly protein protects Legionella pneumophila from light but does not directly influence its intracellular survival in Hartmannella vermiformis[J]. Applied and Environmental Microbiology, 1995, 61(6):2428-2430.
    [44] ZHENG HX, CHATFIELD CH, LILES MR, CIANCIOTTO NP. Secreted pyomelanin of Legionella pneumophila promotes bacterial iron uptake and growth under iron-limiting conditions[J]. Infection and Immunity, 2013, 81(11):4182-4191.
    [45] TURICK CE, CACCAVO F, TISA LS. Pyomelanin is produced by Shewanella algae BrY and affected by exogenous iron[J]. Canadian Journal of Microbiology, 2008, 54(4):334-339.
    [46] NOORIAN P, HU J, CHEN ZL, KJELLEBERG S, WILKINS MR, SUN SY, MCDOUGALD D. Pyomelanin produced by Vibrio cholerae confers resistance to predation by Acanthamoeba castellanii[J]. FEMS Microbiology Ecology, 2017, 93(12):fix147.
    [47] AHMAD S, LEE SY, KONG HG, JO EJ, CHOI HK, KHAN R, LEE SW. Genetic determinants for pyomelanin production and its protective effect against oxidative stress in Ralstonia solanacearum[J]. PLoS One, 2016, 11(8):e0160845.
    [48] ZENG ZS, GUO XP, CAI XS, WANG PX, LI BY, YANG JL, WANG XX. Pyomelanin from Pseudoalteromonas lipolytica reduces biofouling[J]. Microbial Biotechnology, 2017, 10(6):1718-1731.
    [49] HOCQUET D, PETITJEAN M, ROHMER L, VALOT B, KULASEKARA HD, BEDEL E, BERTRAND X, PLÉSIAT P, KÖHLER T, PANTEL A, JACOBS MA, HOFFMAN LR, MILLER SI. Pyomelanin-producing Pseudomonas aeruginosa selected during chronic infections have a large chromosomal deletion which confers resistance to pyocins[J]. Environmental Microbiology, 2016, 18(10):3482-3493.
    [50] VALIANTE V, JAIN R, HEINEKAMP T, BRAKHAGE AA. The MpkA MAP kinase module regulates cell wall integrity signaling and pyomelanin formation in Aspergillus fumigatus[J]. Fungal Genetics and Biology, 2009, 46(12):909-918.
    [51] CHAI LYA, NETEA MG, SUGUI J, VONK AG, van de SANDE WWJ, WARRIS A, KWON-CHUNG KJ, KULLBERG BJ. Aspergillus fumigatus conidial melanin modulates host cytokine response[J]. Immunobiology, 2010, 215(11):915-920.
    [52] STAPPERS MHT, CLARK AE, AIMANIANDA V, BIDULA S, REID DM, ASAMAPHAN P, HARDISON SE, DAMBUZA IM, VALSECCHI I, KERSCHER B, PLATO A, WALLACE CA, YUECEL R, HEBECKER B, da GLÓRIA TEIXEIRA SOUSA M, CUNHA C, LIU Y, FEIZI T, BRAKHAGE AA, CHUNG KJK, et al. Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus[J]. Nature, 2018, 555(7696):382-386.
    [53] TONE K, STAPPERS MHT, HATINGUAIS R, DAMBUZA IM, SALAZAR F, WALLACE C, YUECEL R, MORVAY PL, KUWANO K, WILLMENT JA, BROWN GD. MelLec exacerbates the pathogenesis of Aspergillus fumigatus-induced allergic inflammation in mice[J]. Frontiers in Immunology, 2021, 12:675702.
    [54] WONG SSW, RANI M, DODAGATTA-MARRI E, IBRAHIM-GRANET O, KISHORE U, BAYRY J, LATGÉ JP, SAHU A, MADAN T, AIMANIANDA V. Fungal melanin stimulates surfactant protein d-mediated opsonization of and host immune response to Aspergillus fumigatus spores[J]. Journal of Biological Chemistry, 2018, 293(13):4901-4912.
    [55] WONG SSW, DELLIÈRE S, SCHIEFERMEIER- MACH N, LECHNER L, PERKHOFER S, BOMME P, FONTAINE T, SCHLOSSER AG, SORENSEN GL, MADAN T, KISHORE U, AIMANIANDA V. Surfactant protein D inhibits growth, alters cell surface polysaccharide exposure and immune activation potential of Aspergillus fumigatus[J]. The Cell Surface, 2022, 8:100072.
    [56] THYWIßEN A, HEINEKAMP T, DAHSE HM, SCHMALER-RIPCKE J, NIETZSCHE S, ZIPFEL PF, BRAKHAGE AA. Conidial dihydroxynaphthalene melanin of the human pathogenic fungus Aspergillus fumigatus interferes with the host endocytosis pathway[J]. Frontiers in Microbiology, 2011, 2:96.
    [57] AKOUMIANAKI T, KYRMIZI I, VALSECCHI I, GRESNIGT MS, SAMONIS G, DRAKOS E, BOUMPAS D, MUSZKIETA L, PREVOST MC, KONTOYIANNIS DP, CHAVAKIS T, NETEA MG, van de VEERDONK FL, BRAKHAGE AA, EL-BENNA J, BEAUVAIS A, LATGE JP, CHAMILOS G. Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity[J]. Cell Host & Microbe, 2016, 19(1):79-90.
    [58] KYRMIZI I, FERREIRA H, CARVALHO A, ALBERTO LANDERO FIGUEROA J, ZARMPAS P, CUNHA C, AKOUMIANAKI T, STYLIANOU K, DEEPE GS JR, SAMONIS G, LACERDA JF, CAMPOS A JR, KONTOYIANNIS DP, MIHALOPOULOS N, KWON-CHUNG KJ, EL-BENNA J, VALSECCHI I, BEAUVAIS A, BRAKHAGE AA, NEVES NM, et al. Calcium sequestration by fungal melanin inhibits calcium-calmodulin signalling to prevent LC3-associated phagocytosis[J]. Nature Microbiology, 2018, 3(7):791-803.
    [59] SCHMIDT F, THYWIßEN A, GOLDMANN M, CUNHA C, CSERESNYÉS C, SCHMIDT H, RAFIQ M, GALIANI S, GRÄLER MH, CHAMILOS G, Lacerda JF, CAMPOS A Jr, EGGELING C, FIGGE MT, HEINEKAMP T, FILLER SG, CARVALHO A, BRAKHAGE AA. Flotillin-dependent membrane microdomains are required for functional phagolysosomes against fungal infections[J]. Cell Reports, 2020, 32(7):108017.
    [60] ESCOBAR N, ORDONEZ SR, WÖSTEN HAB, HAAS PJ A, de COCK H, HAAGSMAN HP. Hide, keep quiet, and keep low:properties that make Aspergillus fumigatus a successful lung pathogen[J]. Frontiers in Microbiology, 2016, 7:438.
    [61] FORN-CUNÍ G, WELVAARTS L, STEL F, van den HONDEL C, ARENTSHORST M, RAM A, MEIJER A. Stimulating the autophagic-lysosomal axis enhances host defense against fungal infection in a zebrafish model of invasive Aspergillosis[J]. Autophagy, 2023, 19(1):324-337.
    [62] VOLLING K, THYWISSEN A, BRAKHAGE AA, SALUZ HP. Phagocytosis of melanized Aspergillus conidia by macrophages exerts cytoprotective effects by sustained PI3K/Akt signalling[J]. Cellular Microbiology, 2011, 13(8):1130-1148.
    [63] MOHEBBI S, ERFURTH F, HENNERSDORF P, BRAKHAGE AA, SALUZ HP. Hyperspectral imaging using intracellular spies:quantitative real-time measurement of intracellular parameters in vivo during interaction of the pathogenic fungus Aspergillus fumigatus with human monocytes[J]. PLoS One, 2016, 11(10):e0163505.
    [64] GONÇALVES SM, DUARTE-OLIVEIRA C, CAMPOS CF, AIMANIANDA V, TER HORST R, LEITE L, MERCIER T, PEREIRA P, FERNÁNDEZ-GARCÍA M, ANTUNES D, RODRIGUES CS, BARBOSA-MATOS C, GAIFEM J, MESQUITA I, MARQUES A, OSÓRIO NS, TORRADO E, RODRIGUES F, COSTA S, JOOSTEN LA, et al. Phagosomal removal of fungal melanin reprograms macrophage metabolism to promote antifungal immunity[J]. Nature Communications, 2020, 11:2282.
    [65] KEIZER EM, VALDES ID, McCANN BL, BIGNELL EM, WÖSTEN HAB, de COCK H. The protective role of 1, 8-dihydroxynaphthalene-melanin on conidia of the opportunistic human pathogen Aspergillus fumigatus revisited:no role in protection against hydrogen peroxide and superoxides[J]. mSphere, 2022, 7(1):e00874-e00821.
    [66] de CÁSSIA RIBEIRO GONÇALVES R, KITAGAWA RR, STELLA GONÇALVES RADDI M, CARLOS IZ, POMBEIRO-SPONCHIADO SR. Inhibition of nitric oxide and tumour necrosis factor-α production in peritoneal macrophages by Aspergillus nidulans melanin[J]. Biological and Pharmaceutical Bulletin, 2013, 36(12):1915-1920.
    [67] HAN XL, YU RT, ZHEN DY, TAO S, SCHMIDT M, HAN L. β-1,3-glucan-induced host phospholipase D activation is involved in Aspergillus fumigatus internalization into type II human pneumocyte A549 cells[J]. PLoS One, 2011, 6(7):e21468.
    [68] JIA XD, CHEN FY, PAN WH, YU RT, TIAN SG, HAN GG, FANG HQ, WANG S, ZHAO JY, LI XP, ZHENG DY, TAO S, LIAO WQ, HAN XL, HAN L. Gliotoxin promotes Aspergillus fumigatus internalization into type II human pneumocyte A549 cells by inducing host phospholipase D activation[J]. Microbes and Infection, 2014, 16(6):491-501.
    [69] BAO ZY, HAN XL, CHEN FY, JIA XD, ZHAO JY, ZHANG CJ, YONG C, TIAN SG, ZHOU X, HAN L. Evidence for the involvement of cofilin in Aspergillus fumigatus internalization into type II alveolar epithelial cells[J]. BMC Microbiology, 2015, 15(1):1-11.
    [70] ZHANG CJ, CHEN FY, LIU XY, HAN XL, HU YS, SU XT, CHEN Y, SUN YS, HAN L. Gliotoxin induces cofilin phosphorylation to promote actin cytoskeleton dynamics and internalization of Aspergillus fumigatus into type II human pneumocyte cells[J]. Frontiers in Microbiology, 2019, 10:1345.
    [71] HAN XL, SU XT, LI ZQ, LIU YX, WANG S, ZHU M, ZHANG CJ, YANG F, ZHAO JY, LI XP, CHEN FY, HAN L. Complement receptor 3 mediates Aspergillus fumigatus internalization into alveolar epithelial cells with the increase of intracellular phosphatidic acid by activating FAK[J]. Virulence, 2021, 12(1):1980-1996.
    [72] RAMBACH G, BLUM G, LATGÉ JP, FONTAINE T, HEINEKAMP T, HAGLEITNER M, JECKSTRÖM H, WEIGEL G, WÜRTINGER P, PFALLER K, KRAPPMANN S, LÖFFLER J, LASS-FLÖRL C, SPETH C. Identification of Aspergillus fumigatus surface components that mediate interaction of conidia and hyphae with human platelets[J]. The Journal of Infectious Diseases, 2015, 212(7):1140-1149.
    [73] SONG L, ZHAO YJ, WANG G, ZOU WL, SAI LT. Investigation of predictors for invasive pulmonary aspergillosis in patients with severe fever with thrombocytopenia syndrome[J]. Scientific Reports, 2023, 13:1538.
    [74] GURUCEAGA X, EZPELETA G, MAYAYO E, SUEIRO-OLIVARES M, ABAD-DIAZ-DE-CERIO A, AGUIRRE URÍZAR JM, LIU HG, WIEMANN P, BOK JW, FILLER SG, KELLER NP, HERNANDO FL, RAMIREZ-GARCIA A, REMENTERIA A. A possible role for fumagillin in cellular damage during host infection by Aspergillus fumigatus[J]. Virulence, 2018, 9(1):1548-1561.
    [75] BOYCE KJ, McLAUCHLAN A, SCHREIDER L, ANDRIANOPOULOS A. Intracellular growth is dependent on tyrosine catabolism in the dimorphic fungal pathogen Penicillium marneffei[J]. PLoS Pathogens, 2015, 11(3):e1004790.
    [76] BRIARD B, RASOLDIER V, BOMME P, ElAOUAD N, GUERREIRO C, CHASSAGNE P, MUSZKIETA L, LATGÉ JP, MULARD L, BEAUVAIS A. Dirhamnolipids secreted from Pseudomonas aeruginosa modify anjpegungal susceptibility of Aspergillus fumigatus by inhibiting β1,3 glucan synthase activity[J]. The ISME Journal, 2017, 11(7):1578-1591.
    [77] FERNANDES C, MOTA M, BARROS L, DIAS MI, FERREIRA ICFR, PIEDADE AP, CASADEVALL A, GONÇALVES T. Pyomelanin synthesis in Alternaria alternata inhibits DHN-melanin synthesis and decreases cell wall chitin content and thickness[J]. Frontiers in Microbiology, 2021, 12:691433.
    [78] RAMAN NM, RAMASAMY S. Genetic validation and spectroscopic detailing of DHN-melanin extracted from an environmental fungus[J]. Biochemistry and Biophysics Reports, 2017, 12:98-107.
    [79] SINGH S, NIMSE SB, ELZE MATHEW D, DHIMMAR A, SAHASTRABUDHE H, GAJJAR A, GHADGE VA, KUMAR P, SHINDE PB. Microbial melanin:recent advances in biosynthesis, extraction, characterization, and applications[J]. Biotechnology Advances, 2021, 53:107773.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

林杨轩,陈芳艳,韩黎. 烟曲霉黑色素的研究进展[J]. 微生物学通报, 2023, 50(8): 3688-3702

复制
分享
文章指标
  • 点击次数:354
  • 下载次数: 1228
  • HTML阅读次数: 1030
  • 引用次数: 0
历史
  • 收稿日期:2022-12-29
  • 录用日期:2023-04-13
  • 在线发布日期: 2023-08-08
  • 出版日期: 2023-08-20
文章二维码