科微学术

微生物学通报

固氮蓝细菌束毛藻生物固氮策略研究进展
作者:
基金项目:

国家自然科学基金(42188102, 32170108, 91951111)


Progress in the nitrogen fixation strategy of Trichodesmium
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [80]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    固氮蓝细菌束毛藻(Tricodesmium)是海洋中丰度最高的固氮微生物,贡献了约42%的海洋生物固氮,为海洋生态系统提供了新的氮源,驱动海洋初级生产力和食物网,在海洋生物地球化学循环中发挥重要作用。作为海洋中“新氮”主要贡献者,束毛藻是一种不产生异形胞的丝状固氮蓝细菌。因为生物固氮的关键酶固氮酶对氧气十分敏感,一般固氮蓝细菌通常产生异形胞或采用夜间固氮的方式进行生物固氮,避免氧气对固氮酶的抑制作用。近年来研究发现,束毛藻具有一套独特的生物固氮体系,能够使同一藻丝在白天同时完成光合作用和生物固氮,并具有复杂的调控机制。本文综述了近年来束毛藻生物固氮策略的最新研究进展,介绍了其生物固氮和光合作用之间的精密调控机制,对拓展固氮微生物尤其是海洋蓝细菌固氮机制的认识具有借鉴意义。

    Abstract:

    Tricodesmium, a genus of nitrogen-fixing cyanobacteria, is the most abundant nitrogen-fixing microorganisms in the ocean. They contribute about 42% of marine biological nitrogen fixation and provide a new source of nitrogen to marine ecosystems, driving marine primary productivity and biogeochemical cycles. As a major contributor of new nitrogen in the ocean, Tricodesmium is a group of filamentous nitrogen-fixing cyanobacteria that do not produce heterocysts. Because nitrogenase, the key enzyme of biological nitrogen fixation, is sensitive to oxygen, nitrogen-fixing cyanobacteria usually produce heterocysts or fix nitrogen at night to avoid the inhibitory effects of oxygen on nitrogen-fixing enzymes. The recent studies have discovered that Tricodesmium has a unique nitrogen fixation system, which enables the same filament to complete photosynthesis and nitrogen fixation simultaneously during the daytime and has a complex regulatory mechanism. We review the recent progress in the nitrogen fixation strategy of Tricodesmium and introduce the sophisticated regulatory mechanism between biological nitrogen fixation and photosynthesis. This review helps to deenpen our understanding of the nitrogen fixation mechanism of microorganisms, especially marine cyanobacteria.

    参考文献
    [1] JIANG HB, FU FX, RIVERO-CALLE S, LEVINE NM, SAÑUDO-WILHELMY SA, QU PP, WANG XW, PINEDO-GONZALEZ P, ZHU Z, HUTCHINS DA. Ocean warming alleviates iron limitation of marine nitrogen fixation[J]. Nature Climate Change, 2018, 8:709-712.
    [2] ZEHR JP. Nitrogen fixation by marine cyanobacteria[J]. Trends in Microbiology, 2011, 19(4):162-173.
    [3] WALWORTH NG, FU FX, LEE MD, CAI XN, SAITO MA, WEBB EA, HUTCHINS DA. Nutrient-colimited Trichodesmium as a nitrogen source or sink in a future ocean[J]. Applied and Environmental Microbiology, 2018, 84(3):e02137-17.
    [4] HUGO B, SOPHIE B, OLIVIER G, VÉRONIQUE C, AUDE B. Transfer of diazotroph-derived nitrogen towards non-diazotrophic planktonic communities:a comparative study between Trichodesmium erythraeum, Crocosphaera watsonii and Cyanothece sp.[J]. Biogeosciences, 2016, 13(13):4005-4021.
    [5] GARDNER JJ, BOYLE NR. The use of genome-scale metabolic network reconstruction to predict fluxes and equilibrium composition of N-fixing versus C-fixing cells in a diazotrophic Cyanobacterium, Trichodesmium erythraeum[J]. BMC Systems Biology, 2017, 11(1):4.
    [6] CAI XN, GAO KS. Levels of daily light doses under changed day-night cycles regulate temporal segregation of photosynthesis and N2 fixation in the cyanobacterium Trichodesmium erythraeum IMS101[J]. PLoS One, 2015, 10(8):e0135401.
    [7] MOORE CM, MILLS MM, ARRIGO KR, BERMAN-FRANK I, BOPP L, BOYD PW, GALBRAITH ED, GEIDER RJ, GUIEU C, JACCARD SL, JICKELLS TD, ROCHE JL, LENTON TM, MAHOWALD NM, MARAÑÓN E, MARINOV I, MOORE JK, NAKATSUKA T, OSCHLIES A, SAITO MA, et al. Processes and patterns of oceanic nutrient limitation[J]. Nature Geoscience, 2013, 6(9):701-710.
    [8] JIANG HB, LOU WJ, KE WT, SONG WY, PRICE NM, QIU BS. New insights into iron acquisition by cyanobacteria:an essential role for ExbB-ExbD complex in inorganic iron uptake[J]. The ISME Journal, 2015, 9(2):297-309.
    [9] JIANG HB, LU XH, DENG B, LIU LM, QIU BS. Adaptive mechanisms of the model photosynthetic organisms, cyanobacteria, to iron deficiency[M]//Microbial Photosynthesis. Singapore:Springer, 2020:197-244.
    [10] ZHANG XN, WARD BB, SIGMAN DM. Global nitrogen cycle:critical enzymes, organisms, and processes for nitrogen budgets and dynamics[J]. Chemical Reviews, 2020, 120(12):5308-5351.
    [11] CAFFIN M, MOUTIN T, FOSTER RA, BOURUET- AUBERTOT P, DOGLIOLI AM, BERTHELOT H, GUIEU C, GROSSO O, HELIAS-NUNIGE S, LEBLOND N, GIMENEZ A, PETRENKO AA, VERNEIL AD, BONNET S. N2 fixation as a dominant new N source in the western tropical South Pacific Ocean (OUTPACE cruise)[J]. Biogeosciences, 2018, 15(8):2565-2585.
    [12] JICKELLS TD, BUITENHUIS E, ALTIERI K, BAKER AR, CAPONE D, DUCE RA, DENTENER F, FENNEL K, KANAKIDOU M, LAROCHE J, LEE K, LISS P, MIDDELBURG JJ, MOORE JK, OKIN G, OSCHLIES A, SARIN M, SEITZINGER S, SHARPLES J, SINGH A, et al. A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean[J]. Global Biogeochemical Cycles, 2017, 31(2):289-305.
    [13] 傅飞雪, HUTCHINS DA, 姜海波, 高坤山. 氮固定测定方法[M]//高坤山. 水域环境生理学研究方法. 北京:科学出版社, 2018:188-201. FU FX, HUTCHINS DA, JIANG HB, GAO KS. Nitrogen fixation determination method[M]//GAO KS. Research Methods in The Physiology of Aquatic Environments. Beijing:Science Press, 2018:188-201(in Chinese).
    [14] GRUBER N. Consistent patterns of nitrogen fixation identified in the ocean[J]. Nature, 2019, 566(7743):191-193.
    [15] TANG WY, WANG S, FONSECA-BATISTA D, DEHAIRS F, GIFFORD S, GONZALEZ AG, GALLINARI M, PLANQUETTE H, SARTHOU G, CASSAR N. Revisiting the distribution of oceanic N2 fixation and estimating diazotrophic contribution to marine production[J]. Nature Communications, 2019, 10:831.
    [16] HUTCHINS DA, CAPONE DG. The marine nitrogen cycle:new developments and global change[J]. Nature Reviews Microbiology, 2022, 20(7):401-414.
    [17] WANG WL, MOORE JK, MARTINY AC, PRIMEAU FW. Convergent estimates of marine nitrogen fixation[J]. Nature, 2019, 566(7743):205-211.
    [18] GOLDBERG I, NADLER V, HOCHMAN A. Mechanism of nitrogenase switch-off by oxygen[J]. Journal of Bacteriology, 1987, 169(2):874-879.
    [19] YANG NN, MERKEL CA, LIN YA, LEVINE NM, HAWCO NJ, JIANG HB, QU PP, DEMERS MA, WEBB EA, FU FX, HUTCHINS DA. Warming iron-limited oceans enhance nitrogen fixation and drive biogeographic specialization of the globally important Cyanobacterium Crocosphaera[J]. Frontiers in Marine Science, 2021, 8:628363.
    [20] SCHVARCZ CR, WILSON ST, CAFFIN M, STANCHEVA R, LI Q, TURK-KUBO KA, WHITE AE, KARL DM, ZEHR JP, STEWARD GF. Overlooked and widespread pennate diatom-diazotroph symbioses in the sea[J]. Nature Communications, 2022, 13:799.
    [21] ZEHR JP, CAPONE DG. Changing perspectives in marine nitrogen fixation[J]. Science, 2020, 368(6492):eaay9514.
    [22] DELMONT TO, PIERELLA KARLUSICH JJ, VESELI I, FUESSEL J, EREN AM, FOSTER RA, BOWLER C, WINCKER P, PELLETIER E. Heterotrophic bacterial diazotrophs are more abundant than their cyanobacterial counterparts in metagenomes covering most of the sunlit ocean[J]. The ISME Journal, 2022, 16(4):927-936.
    [23] GRADOVILLE MR, FARNELID H, WHITE AE, TURK-KUBO KA, STEWART B, RIBALET F, FERRÓN S, PINEDO-GONZALEZ P, ARMBRUST EV, KARL DM, JOHN S, ZEHR JP. Latitudinal constraints on the abundance and activity of the cyanobacterium UCYN-A and other marine diazotrophs in the North Pacific[J]. Limnology and Oceanography, 2020, 65(8):1858-1875.
    [24] CAPONE DG, ZEHR JP, PAERL HW, BERGMAN B, CARPENTER EJ. Trichodesmium, a globally significant marine cyanobacterium[J]. Science, 1997, 276(5316):1221-1229.
    [25] CAPONE DG. Coming full circle on diazotrophy in the marine cyanobacterium Trichodesmium[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(47):e2117967118.
    [26] BOATMAN TG, OXBOROUGH K, GLEDHILL M, LAWSON T, GEIDER RJ. An integrated response of Trichodesmium erythraeum IMS101 growth and photo-physiology to iron, CO2, and light intensity[J]. Frontiers in Microbiology, 2018, 9:624.
    [27] 张燕英, 董俊德, 王汉奎, 王友绍, 张偲, 黄良民. 海洋蓝藻束毛藻的研究进展[J]. 海洋科学, 2007, 31(3):84-88. ZHANG YY, DONG JD, WANG HK, WANG YS, ZHANG (C/S), HUANG LM. Research development of marine cyanobacteria Trichodesmium spp.[J]. Marine Sciences, 2007, 31(3):84-88(in Chinese).
    [28] BAR-ZEEV E, AVISHAY I, BIDLE KD, BERMAN-FRANK I. Programmed cell death in the marine cyanobacterium Trichodesmium mediates carbon and nitrogen export[J]. The ISME Journal, 2013, 7(12):2340-2348.
    [29] DEUTSCH C, SARMIENTO JL, SIGMAN DM, GRUBER N, DUNNE JP. Spatial coupling of nitrogen inputs and losses in the ocean[J]. Nature, 2007, 445(7124):163-167.
    [30] SOHM JA, WEBB EA, CAPONE DG. Emerging patterns of marine nitrogen fixation[J]. Nature Reviews Microbiology, 2011, 9(7):499-508.
    [31] SEEFELDT LC, YANG ZY, LUKOYANOV DA, HARRIS DF, DEAN DR, RAUGEI S, HOFFMAN BM. Reduction of substrates by nitrogenases[J]. Chemical Reviews, 2020, 120(12):5082-5106.
    [32] BURÉN S, JIMÉNEZ-VICENTE E, ECHAVARRI- ERASUN C, RUBIO LM. Biosynthesis of nitrogenase cofactors[J]. Chemical Reviews, 2020, 120(12):4921-4968.
    [33] CHEN Z, JIANG HB, GAO KS, QIU BS. Acclimation to low ultraviolet-B radiation increases photosystem I abundance and cyclic electron transfer with enhanced photosynthesis and growth in the cyanobacterium Nostoc sphaeroides[J]. Environmental Microbiology, 2020, 22(1):183-197.
    [34] SHANG JL, CHEN M, HOU SW, LI T, YANG YW, LI Q, JIANG HB, DAI GZ, ZHANG ZC, HESS WR, QIU BS. Genomic and transcriptomic insights into the survival of the subaerial cyanobacterium Nostoc flagelliforme in arid and exposed habitats[J]. Environmental Microbiology, 2019, 21(2):845-863.
    [35] 徐晔, 张金池, 王广林, 庄家尧. 固氮酶的研究进展[J]. 生物学杂志, 2011, 28(4):61-64. XU Y, ZHANG JC, WANG GL, ZHUANG JY. Advance of study on nitrogenase[J]. Journal of Biology, 2011, 28(4):61-64(in Chinese).
    [36] HELD NA, WATERBURY JB, WEBB EA, KELLOGG RM, McILVIN MR, JAKUBA M, VALOIS FW, MORAN DM, SUTHERLAND KM, SAITO MA. Dynamic diel proteome and daytime nitrogenase activity supports buoyancy in the cyanobacterium Trichodesmium[J]. Nature Microbiology, 2022, 7(2):300-311.
    [37] BERMAN-FRANK I, QUIGG A, FINKEL ZV, IRWIN AJ, HARAMATY L. Nitrogen-fixation strategies and Fe requirements in cyanobacteria[J]. Limnology and Oceanography, 2007, 52(5):2260-2269.
    [38] JENSEN BB, COX RP. Effect of oxygen concentration on dark nitrogen fixation and respiration in cyanobacteria[J]. Archives of Microbiology, 1983, 135(4):287-292.
    [39] INOMURA K, DEUTSCH C, WILSON ST, MASUDA T, LAWRENZ E, BUČINSKÁ L, SOBOTKA R, GAUGLITZ JM, SAITO MA, PRÁŠIL O, FOLLOWS MJ. Quantifying oxygen management and temperature and light dependencies of nitrogen fixation by Crocosphaera watsonii[J]. mSphere, 2019, 4(6):e00531-19.
    [40] BERGMAN B, SANDH G, LIN SJ, LARSSON J, CARPENTER EJ. Trichodesmium-a widespread marine cyanobacterium with unusual nitrogen fixation properties[J]. FEMS Microbiology Reviews, 2013, 37(3):286-302.
    [41] INOMURA K, WILSON ST, DEUTSCH C. Mechanistic model for the coexistence of nitrogen fixation and photosynthesis in marine Trichodesmium[J]. mSystems, 2019, 4(4):e00210-19.
    [42] CARPENTER EJ, PRICE CC. Nitrogen fixation, distribution, and production of Oscillatoria (Trichodesmium) spp. in the western Sargasso and Caribbean Seas[J]. Limnology and Oceanography, 1977, 22(1):60-72.
    [43] GALLON JR. Reconciling the incompatible:N2 fixation and O2[J]. New Phytologist, 1992, 122(4):571-609.
    [44] EL-SHEHAWY R, LUGOMELA C, ERNST A, BERGMAN B. Diurnal expression of hetR and diazocyte development in the filamentous non-heterocystous cyanobacterium Trichodesmium erythraeum[J]. Microbiology, 2003, 149(5):1139-1146.
    [45] CORNEJO-CASTILLO FM, ZEHR JP. Hopanoid lipids may facilitate aerobic nitrogen fixation in the ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(37):18269-18271.
    [46] MULHOLLAND MR, CAPONE DG. The nitrogen physiology of the marine N2-fixing cyanobacteria Trichodesmium spp.[J]. Trends in Plant Science, 2000, 5(4):148-153.
    [47] BERMAN-FRANK I, LUNDGREN P, CHEN YB, KÜPPER H, KOLBER Z, BERGMAN B, FALKOWSKI P. Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium[J]. Science, 2001, 294(5546):1534-1537.
    [48] BOATMAN TG, DAVEY PA, LAWSON T, GEIDER RJ. CO2 modulation of the rates of photosynthesis and light-dependent O2 consumption in Trichodesmium[J]. Journal of Experimental Botany, 2019, 70(2):589-597.
    [49] FINZI-HART JA, PETT-RIDGE J, WEBER PK, POPA R, FALLON SJ, GUNDERSON T, HUTCHEON ID, NEALSON KH, CAPONE DG. Fixation and fate of C and N in the cyanobacterium Trichodesmium using nanometer-scale secondary ion mass spectrometry[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(15):6345-6350.
    [50] EICHNER M, THOMS S, ROST B, MOHR W, AHMERKAMP S, PLOUG H, KUYPERS MMM, BEER DD. N2 fixation in free-floating filaments of Trichodesmium is higher than in transiently suboxic colony microenvironments[J]. New Phytologist, 2019, 222(2):852-863.
    [51] AGARWAL V, INOMURA K, MOUW CB. Quantitative analysis of the trade-offs of colony formation for Trichodesmium[J]. Microbiology Spectrum, 2022, 10(6):e02025-22.
    [52] GARDNER JJ, HODGE BMS, BOYLE NR. Investigating the unique ability of Trichodesmium to fix carbon and nitrogen simultaneously using MiMoSA[J]. mSystems, 2023, 8(1):e00601-20.
    [53] CHANG YG, COHEN SE, PHONG C, MYERS WK, KIM YI, TSENG R, LIN J, ZHANG L, BOYD JS, LEE Y, KANG S, LEE D, LI S, BRITT RD, RUST MJ, GOLDEN SS, LiWANG A. A protein fold switch joins the circadian oscillator to clock output in cyanobacteria[J]. Science, 2015, 349(6245):324-328.
    [54] TURK KA, REES AP, ZEHR JP, PEREIRA N, SWIFT P, SHELLEY R, LOHAN M, WOODWARD EMS, GILBERT J. Nitrogen fixation and nitrogenase (nifH) expression in tropical waters of the eastern North Atlantic[J]. The ISME Journal, 2011, 5(7):1201-1212.
    [55] LU YY, WEN ZZ, SHI DL, CHEN MM, ZHANG Y, BONNET S, LI YH, TIAN JW, KAO SJ. Effect of light on N2 fixation and net nitrogen release of Trichodesmium in a field study[J]. Biogeosciences, 2018, 15(1):1-12.
    [56] YI XQ, FU FX, HUTCHINS DA, GAO KS. Light availability modulates the effects of warming in a marine N2 fixer[J]. Biogeosciences, 2020, 17(4):1169-1180.
    [57] 丁昌玲, 孙军, 薛冰. 冬夏季南海西部固氮蓝藻[J]. 海洋学报, 2016, 38(04):84-94. DING CL, SUN J, XUE B. Winter and summer diazotrophic cyanobacteria in the western South China Sea[J]. Acta Oceanologica Sinica, 2016, 38(4):84-94(in Chinese).
    [58] STAAL M, MEYSMAN FJR, STAL LJ. Temperature excludes N2-fixing heterocystous cyanobacteria in the tropical oceans[J]. Nature, 2003, 425(6957):504-507.
    [59] RIVERO-CALLE S, del CASTILLO CE, GNANADESIKAN A, DEZFULI A, ZAITCHIK B, JOHNS DG. Interdecadal Trichodesmium variability in cold North Atlantic waters[J]. Global Biogeochemical Cycles, 2016, 30(11):1620-1638.
    [60] KRANZ SA, EICHNER M, ROST B. Interactions between CCM and N2 fixation in Trichodesmium[J]. Photosynthesis Research, 2011, 109(1):73-84.
    [61] RAMOS JBE, BISWAS H, SCHULZ KG, LaROCHE J, RIEBESELL U. Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer Trichodesmium[J]. Global Biogeochemical Cycles, 2007, 21(2):GB2028.
    [62] HUTCHINS DA, FU FX, WEBB EA, WALWORTH N, TAGLIABUE A. Taxon-specific response of marine nitrogen fixers to elevated carbon dioxide concentrations[J]. Nature Geoscience, 2013, 6(9):790-795.
    [63] BERTHELOT H, BONNET S, CAMPS M, GROSSO O, MOUTIN T. Assessment of the dinitrogen released as ammonium and dissolved organic nitrogen by unicellular and filamentous marine diazotrophic cyanobacteria grown in culture[J]. Frontiers in Marine Science, 2015, 2:80.
    [64] POST AF, RIHTMAN B, WANG QF. Decoupling of ammonium regulation and ntcA transcription in the diazotrophic marine cyanobacterium Trichodesmium sp. IMS101[J]. The ISME Journal, 2012, 6(3):629-637.
    [65] NELSON JA, STALLINGS CD, LANDING WM, CHANTON J. Biomass transfer subsidizes nitrogen to offshore food webs[J]. Ecosystems, 2013, 16(6):1130-1138.
    [66] KLAWONN I, EICHNER MJ, WILSON ST, MORADI N, THAMDRUP B, KÜMMEL S, GEHRE M, KHALILI A, GROSSART HP, KARL DM, PLOUG H. Distinct nitrogen cycling and steep chemical gradients in Trichodesmium colonies[J]. The ISME Journal, 2020, 14(2):399-412.
    [67] BOATMAN TG, DAVEY PA, LAWSON T, GEIDER RJ. The physiological cost of diazotrophy for Trichodesmium erythraeum IMS101[J]. PLoS One, 2018, 13(4):e0195638.
    [68] KNAPP AN. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen[J]. Frontiers in Microbiology, 2012, 3:374.
    [69] ZHANG FT, WEN ZZ, WANG SL, TANG WY, LUO YW, KRANZ SA, HONG HZ, SHI DL. Phosphate limitation intensifies negative effects of ocean acidification on globally important nitrogen fixing cyanobacterium[J]. Nature Communications, 2022, 13:6730.
    [70] LEVITAN O, BROWN CM, SUDHAUS S, CAMPBELL D, LAROCHE J, BERMAN-FRANK I. Regulation of nitrogen metabolism in the marine diazotroph Trichodesmium IMS101 under varying temperatures and atmospheric CO2 concentrations[J]. Environmental Microbiology, 2010, 12(7):1899-1912.
    [71] CERDAN-GARCIA E, BAYLAY A, POLYVIOU D, WOODWARD EMS, WRIGHTSON L, MAHAFFEY C, LOHAN MC, MOORE CM, BIBBY TS, ROBIDART JC. Transcriptional responses of Trichodesmium to natural inverse gradients of Fe and P availability[J]. The ISME Journal, 2022, 16(4):1055-1064.
    [72] CHAPPELL PD, MOFFETT JW, HYNES AM, WEBB EA. Molecular evidence of iron limitation and availability in the global diazotroph Trichodesmium[J]. The ISME Journal, 2012, 6(9):1728-1739.
    [73] DETONI AMS, SUBRAMANIAM A, HALEY ST, DYHRMAN ST, CALIL PHR. Cyanobacterial diazotroph distributions in the western South Atlantic[J]. Frontiers in Marine Science, 2022, 9:856643.
    [74] KESSLER N, ARMOZA-ZVULONI R, WANG SY, BASU S, WEBER PK, STUART RK, SHAKED Y. Selective collection of iron-rich dust particles by natural Trichodesmium colonies[J]. The ISME Journal, 2020, 14(1):91-103.
    [75] BASU S, GLEDHILL M, BEER DD, MATONDKAR SGP, SHAKED Y. Colonies of marine cyanobacteria Trichodesmium interact with associated bacteria to acquire iron from dust[J]. Communications Biology, 2019, 2:284.
    [76] LIU LM, LI DL, DENG B, WANG XW, JIANG HB. Special roles for efflux systems in iron homeostasis of non-siderophore-producing cyanobacteria[J]. Environmental Microbiology, 2022, 24(2):551-565.
    [77] HELD NA, WEBB EA, McILVIN MM, HUTCHINS DA, COHEN NR, MORAN DM, KUNDE K, LOHAN MC, MAHAFFEY C, WOODWARD EMS, SAITO MA. Co-occurrence of Fe and P stress in natural populations of the marine diazotroph Trichodesmium[J]. Biogeosciences, 2020, 17(9):2537-2551.
    [78] ZHU Z, FU FX, QU PP, MAK EWK, JIANG HB, ZHANG RF, ZHU ZY, GAO KS, HUTCHINS DA. Interactions between ultraviolet radiation exposure and phosphorus limitation in the marine nitrogen-fixing cyanobacteria Trichodesmium and Crocosphaera[J]. Limnology and Oceanography, 2020, 65(2):363-376.
    [79] LI XF, FONSECA-BATISTA D, ROEVROS N, DEHAIRS F, CHOU L. Environmental and nutrient controls of marine nitrogen fixation[J]. Progress in Oceanography, 2018, 167:125-137.
    [80] LI JH, WANG ZW, CAO X, WANG ZF, ZHENG Z. Effect of orthophosphate and bioavailability of dissolved organic phosphorous compounds to typically harmful cyanobacterium Microcystis aeruginosa[J]. Marine Pollution Bulletin, 2015, 92(1/2):52-58.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李双青,肖燕,王鑫威,姜海波. 固氮蓝细菌束毛藻生物固氮策略研究进展[J]. 微生物学通报, 2023, 50(8): 3606-3619

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-10
  • 录用日期:2023-04-14
  • 在线发布日期: 2023-08-08
  • 出版日期: 2023-08-20
文章二维码