科微学术

微生物学通报

链霉菌启动子及其应用研究进展
作者:
基金项目:

国家重点研发计划(2018YFA0903300);国家自然科学基金(32071426)


Recent advances and applications of Streptomyces promoters
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [91]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    链霉菌天然产物因其显著的生物活性一直是新药开发的重要来源,测序技术的发展揭示了链霉菌强大的生物合成潜力。链霉菌中多数次级代谢生物合成基因簇(biosynthetic gene clusters, BGCs)在常规实验条件下表达水平低甚至不表达,这使得相关天然产物的开发受到阻碍。原位激活和异源表达是挖掘链霉菌天然产物的有效方式,启动子作为基因表达的“开关”,在其中发挥着重要作用。因此对启动子的研究可以有效地促进BGCs的激活,从而挖掘新天然产物。本文重点阐述了链霉菌启动子的结构特征及其挖掘表征和设计构建的思路,并列举了链霉菌启动子在天然产物开发中的应用,有望为链霉菌生物合成路径的优化以及全新生物活性物质的发现提供思路和方法学参考。

    Abstract:

    Natural products with remarkable biological activities from Streptomyces are important sources for drug discovery. The advancing sequencing technology has revealed the biosynthetic potential of Streptomyces. Most biosynthetic gene clusters (BGCs) in Streptomyces are at low expression levels or even in silence under routine laboratory conditions, which hinders the discovery of natural products. In situ activation and heterologous expression are effective ways for discovering natural products in Streptomyces, in which promoters as the “switch” of gene expression play a key role. Therefore, the study of promoters can promote the activation of BGCs for the mining of new natural products. We introduce Streptomyces promoters in terms of the structures, mining, design, and applications in natural product discovery. This review is expected to provide new insights and methodological references for the optimization of biosynthesis pathways and the discovery of new bioactive substances in Streptomyces.

    参考文献
    [1] RODRIGUES T, REKER D, SCHNEIDER P, SCHNEIDER G. Counting on natural products for drug design[J]. Nature Chemistry, 2016, 8(6):531-541.
    [2] NEWMAN DJ, CRAGG GM. Natural products as sources of new drugs from 1981 to 2014[J]. Journal of Natural Products, 2016, 79(3):629-661.
    [3] LIU R, DENG ZX, LIU TG. Streptomyces species:ideal chassis for natural product discovery and overproduction[J]. Metabolic Engineering, 2018, 50:74-84.
    [4] BARKA EA, VATSA P, SANCHEZ L, GAVEAU- VAILLANT N, JACQUARD C, MEIER-KOLTHOFF JP, KLENK HP, CLÉMENT C, OUHDOUCH Y, van WEZEL GP. Taxonomy, physiology, and natural products of actinobacteria[J]. Microbiology and Molecular Biology Reviews, 2016, 80(1):1-43.
    [5] ZHAO QY, WANG LP, LUO YZ. Recent advances in natural products exploitation in Streptomyces via synthetic biology[J]. Engineering in Life Sciences, 2019, 19(6):452-462.
    [6] OLGA G. Actinomycetes:still a source of novel antibiotics[J]. Natural Product Reports, 2017, 34(10):1203-1232.
    [7] AIGLE B, LAUTRU S, SPITELLER D, DICKSCHAT JS, CHALLIS GL, LEBLOND P, PERNODET JL. Genome mining of Streptomyces ambofaciens[J]. Journal of Industrial Microbiology and Biotechnology, 2014, 41(2):251-263.
    [8] WARD AC, ALLENBY NE. Genome mining for the search and discovery of bioactive compounds:the Streptomyces paradigm[J]. FEMS Microbiology Letters, 2018, 365(24):fny240.
    [9] YANG ZJ, HE JQ, WEI X, JU JH, MA JY. Exploration and genome mining of natural products from marine Streptomyces[J]. Applied Microbiology and Biotechnology, 2020, 104(1):67-76.
    [10] MCLEAN TC, WILKINSON B, HUTCHINGS MI, DEVINE R. Dissolution of the disparate:co-ordinate regulation in antibiotic biosynthesis[J]. Antibiotics, 2019, 8(2):83-100.
    [11] RUTLEDGE PJ, CHALLIS GL. Discovery of microbial natural products by activation of silent biosynthetic gene clusters[J]. Nature Reviews Microbiology, 2015, 13(8):509-523.
    [12] XIA HY, LI XF, LI ZQ, ZHAN XQ, MAO XM, LI YQ. The application of regulatory cascades in Streptomyces:yield enhancement and metabolite mining[J]. Frontiers in Microbiology, 2020, 11:406.
    [13] KANG HS, KIM ES. Recent advances in heterologous expression of natural product biosynthetic gene clusters in Streptomyces hosts[J]. Current Opinion in Biotechnology, 2021, 69:118-127.
    [14] WU QB, ZHANG XY, CHEN XA, LI YQ. Improvement of FK506 production via metabolic engineering-guided combinational strategies in Streptomyces tsukubaensis[J]. Microbial Cell Factories, 2021, 20(1):166.
    [15] ZHAO XJ, ZONG YQ, WEI WJ, LOU CB. Multiplexed promoter engineering for improving thaxtomin A production in heterologous Streptomyces hosts[J]. Life, 2022, 12(5):689.
    [16] CHU LY, LI SS, DONG ZX, ZHANG YY, JIN PJ, YE L, WANG XJ, XIANG WS. Mining and engineering exporters for titer improvement of macrolide biopesticides in Streptomyces[J]. Microbial Biotechnology, 2022, 15(4):1120-1132.
    [17] CAMERON DE, BASHOR CJ, COLLINS JJ. A brief history of synthetic biology[J]. Nature Reviews Microbiology, 2014, 12(5):381-390.
    [18] ZHANG XE, LIU CL, DAI JB, YUAN YJ, GAO CX, FENG Y, WU B, WEI P, YOU C, WANG XW, SI T. Enabling technology and core theory of synthetic biology[J]. Science China Life Sciences, 2023:1-44.
    [19] ZHOU ZX, XU QQ, BU QT, GUO YY, LIU SP, LIU Y, DU YL, LI YQ. Genome mining-directed activation of a silent angucycline biosynthetic gene cluster in Streptomyces chattanoogensis[J]. ChemBioChem, 2015, 16(3):496-502.
    [20] TAO WX, YANG AN, DENG ZX, SUN YH. CRISPR/Cas9-based editing of Streptomyces for discovery, characterization, and production of natural products[J]. Frontiers in Microbiology, 2018, 9:1660.
    [21] ZHANG MM, WONG FT, WANG YJ, LUO SW, LIM YH, HENG E, YEO WL, COBB RE, ENGHIAD B, ANG EL, ZHAO HM. CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters[J]. Nature Chemical Biology, 2017, 13(6):607-609.
    [22] GOMEZ-ESCRIBANO JP, CASTRO JF, RAZMILIC V, JARMUSCH SA, SAALBACH G, EBEL R, JASPARS M, ANDREWS B, ASENJO JA, BIBB MJ. Heterologous expression of a cryptic gene cluster from Streptomyces leeuwenhoekii C34T yields a novel lasso peptide, leepeptin[J]. Applied and Environmental Microbiology, 2019, 85(23):e01752-e01719.
    [23] PRIBNOW D. Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter[J]. Proceedings of the National Academy of Sciences of the United States of America, 1975, 72(3):784-788.
    [24] LANZER M, BUJARD H. Promoters largely determine the efficiency of repressor action[J]. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(23):8973-8977.
    [25] KLEIN CA, TEUFEL M, WEILE CJ, SOBETZKO P. The bacterial promoter spacer modulates promoter strength and timing by length, TG-motifs and DNA supercoiling sensitivity[J]. Scientific Reports, 2021, 11:24399.
    [26] FORQUET R, NASSER W, REVERCHON S, MEYER S. Quantitative contribution of the spacer length in the supercoiling-sensitivity of bacterial promoters[J]. Nucleic Acids Research, 2022, 50(13):7287-7297.
    [27] BIBB MJ, JANSSEN GR, WARD JM. Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus[J]. Gene, 1985, 38(1/3):215-226.
    [28] MANOME T, HOSHINO E. Cloning of DNA fragments containing Streptomyces promoter activity[J]. The Journal of Antibiotics, 1987, 40(10):1440-1447.
    [29] STROHL WR. Compilation and analysis of DNA sequences associated with apparent streptomycete promoters[J]. Nucleic Acids Research, 1992, 20(5):961-974.
    [30] SEGHEZZI N, AMAR P, KOEBMANN B, JENSEN PR, VIROLLE MJ. The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters[J]. Applied Microbiology and Biotechnology, 2011, 90(2):615-623.
    [31] JEONG Y, KIM JN, KIM MW, BUCCA G, CHO S, YOON YJ, KIM BG, ROE JH, KIM SC, SMITH CP, CHO BK. The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2)[J]. Nature Communications, 2016, 7:11605.
    [32] HWANG S, LEE N, JEONG Y, LEE Y, KIM W, CHO S, PALSSON BO, CHO BK. Primary transcriptome and translatome analysis determines transcriptional and translational regulatory elements encoded in the Streptomyces clavuligerus genome[J]. Nucleic Acids Research, 2019, 47(12):6114-6129.
    [33] DROSTE J, RÜCKERT C, KALINOWSKI J, HAMED MB, ANNÉ J, SIMOENS K, BERNAERTS K, ECONOMOU A, BUSCHE T. Extensive reannotation of the genome of the model streptomycete Streptomyces lividans TK24 based on transcriptome and proteome information[J]. Frontiers in Microbiology, 2021, 12:604034.
    [34] LEE Y, LEE N, HWANG S, KIM W, CHO S, PALSSON BO, CHO BK. Genome-scale analysis of genetic regulatory elements in Streptomyces avermitilis MA-4680 using transcript boundary information[J]. BMC Genomics, 2022, 23(1):68.
    [35] LABES G, BIBB M, WOHLLEBEN W. Isolation and characterization of a strong promoter element from the Streptomyces ghanaensis phage I19 using the gentamicin resistance gene (aacC1) of Tn 1696 as reporter[J]. Microbiology, 1997, 143(5):1503-1512.
    [36] WANG WS, LI X, WANG J, XIANG SH, FENG XZ, YANG KQ. An engineered strong promoter for streptomycetes[J]. Applied and Environmental Microbiology, 2013, 79(14):4484-4492.
    [37] SPRUŠANSKÝ O, ŘEŽUCHOVÁ B, HOMEROVÁ D, KORMANEC J. Expression of the gap gene encoding glyceraldehyde-3-phosphate dehydrogenase of Streptomyces aureofaciens requires GapR, a member of the AraC/XylS family of transcriptional activators[J]. Microbiolog, 2001, 147(5):1291-1301.
    [38] ECKHARDT T, STRICKLER J, GORNIAK L, BURNETT WV, FARE LR. Characterization of the promoter, signal sequence, and amino terminus of a secreted beta-galactosidase from Streptomyces lividans[J]. Journal of Bacteriology, 1987, 169(9):4249-4256.
    [39] TIELEMAN LN, van WEZEL GP, BIBB MJ, KRAAL B. Growth phase-dependent transcription of the Streptomyces ramocissimus tuf1 gene occurs from two promoters[J]. Journal of Bacteriology, 1997, 179(11):3619-3624.
    [40] FORNWALD JA, SCHMIDT FJ, ADAMS CW, ROSENBERG M, BRAWNER ME. Two promoters, one inducible and one constitutive, control transcription of the Streptomyces lividans galactose operon[J]. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84(8):2130-2134.
    [41] HERAI S, HASHIMOTO Y, HIGASHIBATA H, MASEDA H, IKEDA H, OMURA S, KOBAYASHI M. Hyper-inducible expression system for streptomycetes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(39):14031-14035.
    [42] DELIC I, ROBBINS P, WESTPHELING J. Direct repeat sequences are implicated in the regulation of two Streptomyces chitinase promoters that are subject to carbon catabolite control[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(5):1885-1889.
    [43] MURAKAMI T, HOLT TG, THOMPSON CJ. Thiostrepton-induced gene expression in Streptomyces lividans[J]. Journal of Bacteriology, 1989, 171(3):1459-1466.
    [44] ZHANG GX, LIU P, WEI W, WANG XD, WEI DZ, WANG W. A light-switchable bidirectional expression system in filamentous fungus Trichoderma reesei[J]. Journal of Biotechnology, 2016, 240:85-93.
    [45] LI W, LI HX, JI SY, LI S, GONG YS, YANG MM, CHEN YL. Characterization of two temperature-inducible promoters newly isolated from B. subtilis[J]. Biochemical and Biophysical Research Communications. 2007, 358(4):1148-1153.
    [46] LIU S, WANG M, DU GC, CHEN J. Improving the active expression of transglutaminase in Streptomyces lividans by promoter engineering and codon optimization[J]. BMC Biotechnology, 2016, 16(1):75.
    [47] LUO YZ, ZHANG L, BARTON KW, ZHAO HM. Systematic identification of a panel of strong constitutive promoters from Streptomyces albus[J]. ACS Synthetic Biology, 2015, 4(9):1001-1010.
    [48] WANG XR, NING XJ, ZHAO QQ, KANG QJ, BAI LQ. Improved PKS gene expression with strong endogenous promoter resulted in geldanamycin yield increase[J]. Biotechnology Journal, 2017, 12(11):1700321.
    [49] JIN PJ, LI SS, ZHANG YY, CHU LY, HE HR, DONG ZX, XIANG WS. Mining and fine-tuning sugar uptake system for titer improvement of milbemycins in Streptomyces bingchenggensis[J]. Synthetic and Systems Biotechnology, 2020, 5(3):214-221.
    [50] WANG K, CHEN XA, LI YQ, MAO XM. Identification of a secondary metabolism-responsive promoter by proteomics for over-production of natamycin in Streptomyces[J]. Archives of Microbiology, 2019, 201(10):1459-1464.
    [51] WANG K, LIU XF, BU QT, ZHENG Y, CHEN XA, LI YQ, MAO XM. Transcriptome-based identification of a strong promoter for hyper-production of natamycin in Streptomyces[J]. Current Microbiology, 2019, 76(1):95-99.
    [52] YANG TJ, YANG KQ, CHEN YH, FAN KQ. Characterization of a bi-directional promoter otrRp involved in oxytetracycline biosynthesis[J]. Current Microbiology, 2019, 76(11):1264-1269.
    [53] PAN XW, TANG M, YOU JJ, HAO YN, ZHANG X, YANG TW, RAO ZM. A novel method to screen strong constitutive promoters in Escherichia coli and Serratia marcescens for industrial applications[J]. Biology, 2022, 12(1):71.
    [54] RODRÍGUEZ-GARCÍA A, COMBES P, PÉREZ-REDONDO R, SMITH MCA, SMITH MCM. Natural and synthetic tetracycline-inducible promoters for use in the antibiotic-producing bacteria Streptomyces[J]. Nucleic Acids Research, 2005, 33(9):e87.
    [55] HORBAL L, FEDORENKO V, LUZHETSKYY A. Novel and tightly regulated resorcinol and cumate-inducible expression systems for Streptomyces and other actinobacteria[J]. Applied Microbiology and Biotechnology, 2014, 98(20):8641-8655.
    [56] WANG WS, YANG TJ, LI YH, LI SS, YIN SL, STYLES K, CORRE C, YANG KQ. Development of a synthetic oxytetracycline-inducible expression system for Streptomycetes using de novo characterized genetic parts[J]. ACS Synthetic Biology, 2016, 5(7):765-773.
    [57] JI CH, KIM H, KANG HS. Synthetic inducible regulatory systems optimized for the modulation of secondary metabolite production in Streptomyces[J]. ACS Synthetic Biology, 2019, 8(3):577-586.
    [58] WANG X, FU YD, WANG MY, NIU GQ. Synthetic cellobiose-inducible regulatory systems allow tight and dynamic controls of gene expression in Streptomyces[J]. ACS Synthetic Biology, 2021, 10(8):1956-1965.
    [59] NOGUCHI Y, KASHIWAGI N, UZURA A, OGINO C, KONDO A, IKEDA H, SOTA M. Development of a strictly regulated xylose-induced expression system in Streptomyces[J]. Microbial Cell Factories, 2018, 17(1):151.
    [60] TAO XY, ZHAO M, ZHANG Y, LIU M, LIU QH, WANG W, WANG FQ, WEI DZ. Comparison of the expression of phospholipase D from Streptomyces halstedii in different hosts and its over-expression in Streptomyces lividans[J]. FEMS Microbiology Letters, 2019, 366(5):fnz051.
    [61] TORRES-BACETE J, LUÍS GARCÍA J, NOGALES J. A portable library of phosphate-depletion based synthetic promoters for customable and automata control of gene expression in bacteria[J]. Microbial Biotechnology, 2021, 14(6):2643-2658.
    [62] SANTOS-BENEIT F. The Pho regulon:a huge regulatory network in bacteria[J]. Frontiers in Microbiology, 2015, 6:402.
    [63] MATSUMOTO M, HASHIMOTO Y, SAITOH Y, KUMANO T, KOBAYASHI M. Development of nitrilase promoter-derived inducible vectors for Streptomyces[J]. Bioscience, Biotechnology, and Biochemistry, 2016, 80(6):1230-1237.
    [64] LI SS, WANG JY, XIANG WS, YANG KQ, LI ZL, WANG WS. An autoregulated fine-tuning strategy for titer improvement of secondary metabolites using native promoters in Streptomyces[J]. ACS Synthetic Biology, 2018, 7(2):522-530.
    [65] BARREALES EG, VICENTE CM, de PEDRO A, SANTOS-ABERTURAS J, APARICIO JF. Promoter engineering reveals the importance of heptameric direct repeats for DNA binding by Streptomyces antibiotic regulatory protein-large ATP-binding regulator of the LuxR family (SARP-LAL) regulators in Streptomyces natalensis[J]. Applied and Environmental Microbiology, 2018, 84(10):e00246-e00218.
    [66] YI JS, KIM MW, KIM M, JEONG Y, KIM EJ, CHO BK, KIM BG. A novel approach for gene expression optimization through native promoter and 5' UTR combinations based on RNA-seq, Ribo-seq, and TSS-seq of Streptomyces coelicolor[J]. ACS Synthetic Biology, 2017, 6(3):555-565.
    [67] ZHAO M, WANG SL, TAO XY, ZHAO GL, REN YH, WANG FQ, WEI DZ. Engineering diverse eubacteria promoters for robust gene expression in Streptomyces lividans[J]. Journal of Biotechnology, 2019, 289:93-102.
    [68] XU HL, YANG C, TIAN XT, CHEN YL, LIU WQ, LI J. Regulatory part engineering for high-yield protein synthesis in an all-Streptomyces-based cell-free expression system[J]. ACS Synthetic Biology, 2022, 11(2):570-578.
    [69] SIEGL T, TOKOVENKO B, MYRONOVSKYI M, LUZHETSKYY A. Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes[J]. Metabolic Engineering, 2013, 19:98-106.
    [70] BAI CX, ZHANG Y, ZHAO XJ, HU YL, XIANG SH, MIAO J, LOU CB, ZHANG LX. Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in Streptomyces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(39):12181-12186.
    [71] JI CH, KIM JP, KANG HS. Library of synthetic Streptomyces regulatory sequences for use in promoter engineering of natural product biosynthetic gene clusters[J]. ACS Synthetic Biology, 2018, 7(8):1946-1955.
    [72] JE HW, JI CH, KIM JY, KANG HS. CaExTun:mitigating Cas9-related toxicity in Streptomyces through species-specific expression tuning with randomized constitutive promoters[J]. ACS Synthetic Biology, 2023, 12(1):61-70.
    [73] CHENG JT, GUAN CR, CUI WJ, ZHOU L, LIU ZM, LI WJ, ZHOU ZM. Enhancement of a high efficient autoinducible expression system in Bacillus subtilis by promoter engineering[J]. Protein Expression and Purification, 2016, 127:81-87.
    [74] HAN LC, CUI WJ, SUO FY, MIAO SN, HAO WL, CHEN QQ, GUO JL, LIU ZM, ZHOU L, ZHOU ZM. Development of a novel strategy for robust synthetic bacterial promoters based on a stepwise evolution targeting the spacer region of the core promoter in Bacillus subtilis[J]. Microbial Cell Factories, 2019, 18(1):96.
    [75] PRESNELL KV, FLEXER-HARRISON M, ALPER HS. Design and synthesis of synthetic UP elements for modulation of gene expression in Escherichia coli[J]. Synthetic and Systems Biotechnology, 2019, 4(2):99-106.
    [76] WANG Y, WANG HC, WEI L, LI SL, LIU LY, WANG XW. Synthetic promoter design in Escherichia coli based on a deep generative network[J]. Nucleic Acids Research, 2020, 48(12):6403-6412.
    [77] ZHAO M, YUAN ZQ, WU LT, ZHOU SH, DENG Y. Precise prediction of promoter strength based on a de novo synthetic promoter library coupled with machine learning[J]. ACS Synthetic Biology, 2022, 11(1):92-102.
    [78] VAISHNAV ED, de BOER CG, MOLINET J, YASSOUR M, FAN L, ADICONIS X, THOMPSON DA, LEVIN JZ, CUBILLOS FA, REGEV A. The evolution, evolvability and engineering of gene regulatory DNA[J]. Nature, 2022, 603(7901):455-463.
    [79] LI SS, WANG JY, LI X, YIN SL, WANG WS, YANG KQ. Genome-wide identification and evaluation of constitutive promoters in Streptomycetes[J]. Microbial Cell Factories, 2015, 14:172.
    [80] LIU XF, WANG JX, CHEN XA, LIU Y, LI YQ. Activation and characterization of lanthomicins A-C by promoter engineering in Streptomyces chattanoogensis L10[J]. Frontiers in Microbiology, 2022, 13:902990.
    [81] LIM YH, WONG FT, YEO WL, CHING KC, LIM YW, HENG E, CHEN SW, TSAI DJ, LAUDERDALE TL, SHIA KS, HO YS, HOON S, ANG EL, ZHANG MM, ZHAO HM. Auroramycin:a potent antibiotic from Streptomyces roseosporus by CRISPR-Cas9 activation[J]. ChemBioChem, 2018, 19(16):1716-1719.
    [82] ZHAO M, WANG MR, WANG SL, XIONG LB, GAO B, LIU M, TAO XY, WANG FQ, WEI DZ. A self-sustained system spanning the primary and secondary metabolism stages to boost the productivity of Streptomyces[J]. ACS Synthetic Biology, 2022, 11(1):353-365.
    [83] ZHANG J, ZHANG D, ZHU J, LIU HY, LIANG SF, LUO YZ. Efficient multiplex genome editing in Streptomyces via engineered CRISPR-Cas12a systems[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8:726.
    [84] SHAO ZY, RAO GD, LI C, ABIL Z, LUO YZ, ZHAO HM. Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold[J]. ACS Synthetic Biology, 2013, 2(11):662-669.
    [85] LUO YZ, HUANG H, LIANG J, WANG M, LU L, SHAO ZY, COBB RE, ZHAO HM. Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster[J]. Nature Communications, 2013, 4:2894.
    [86] SONG CY, LUAN J, CUI QW, DUAN QY, LI Z, GAO YS, LI RJ, LI AY, SHEN YM, LI YZ, STEWART AF, ZHANG YM, FU J, WANG HL. Enhanced heterologous spinosad production from a 79-kb synthetic multioperon assembly[J]. ACS Synthetic Biology, 2019, 8(1):137-147.
    [87] BAUMAN KD, LI J, MURATA K, MANTOVANI SM, DAHESH S, NIZET V, LUHAVAYA H, MOORE BS. Refactoring the cryptic streptophenazine biosynthetic gene cluster unites phenazine, polyketide, and nonribosomal peptide biochemistry[J]. Cell Chemical Biology, 2019, 26(5):724-736.
    [88] KANG HS, CHARLOP-POWERS Z, BRADY SF. Multiplexed CRISPR/Cas9- and TAR-mediated promoter engineering of natural product biosynthetic gene clusters in yeast[J]. ACS Synthetic Biology, 2016, 5(9):1002-1010.
    [89] KIM SH, LU WL, AHMADI MK, MONTIEL D, TERNEI MA, BRADY SF. Atolypenes, tricyclic bacterial sesterterpenes discovered using a multiplexed in vitro Cas9-TAR gene cluster refactoring approach[J]. ACS Synthetic Biology, 2019, 8(1):109-118.
    [90] KIM H, JI CH, JE HW, KIM JP, KANG HS. mpCRISTAR:multiple plasmid approach for CRISPR/Cas9 and TAR-mediated multiplexed refactoring of natural product biosynthetic gene clusters[J]. ACS Synthetic Biology, 2020, 9(1):175-180.
    [91] LIU Y, WAN XY, WANG BJ. Engineered CRISPRa enables programmable eukaryote-like gene activation in bacteria[J]. Nature Communications, 2019, 10:3693.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

董冀欣,周群,罗云孜. 链霉菌启动子及其应用研究进展[J]. 微生物学通报, 2023, 50(8): 3588-3605

复制
分享
文章指标
  • 点击次数:298
  • 下载次数: 1107
  • HTML阅读次数: 1131
  • 引用次数: 0
历史
  • 收稿日期:2023-03-04
  • 录用日期:2023-04-07
  • 在线发布日期: 2023-08-08
  • 出版日期: 2023-08-20
文章二维码