科微学术

微生物学通报

油藏注入水靶向脱硫潜力的高温脱硫菌群富集驯化
作者:
基金项目:

中石化胜利油田分公司科技攻关项目(YKD2203)


Enrichment and acclimation of thermophilic desulfurizing bacterial consortium with sulfide removal potential for injection water of the oil reservoir
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】海上油田见聚后产出水硫化物超标,影响到注聚水的配聚黏度,采用生物脱硫时,由于常规除硫菌难以适应除油后产出液的高温,使得脱硫效果不佳。【目的】分析海上采出液水处理过程的菌群结构,明确生物处理各节点的菌群构成变化;开展耐高温脱硫菌驯化筛选,获得耐高温的高效脱硫菌。【方法】采集来自胜利油田海三站的水样,以16S rRNA基因高通量测序技术分析样本菌群结构,并分别在不同温度(55、60和65 ℃)下的无机富集培养基中进行多轮转接驯化,结合常压室温等离子体(atmospheric and room temperature plasma, ARTP)诱变技术筛选获得耐高温的脱硫菌群,采用宏基因组测序技术分析富集菌群的组成,并测定其脱硫能力。【结果】处理前的采出液水样含有较多的嗜热菌和硫酸盐还原菌,如ThermodesulfovibrioPseudothermotogaThermolithobacterFervidobacteriumThermovenabulalesPseudomonas;以厌氧气浮除油工艺处理的出水中,嗜氢菌属(Hydrogenophilus)成为最主要的优势菌,该菌在中心三平台外输水中相对丰度占比为76%,在注聚平台水中相对丰度占比为84%。然而经过不断提高温度的驯化富集后,菌群中栖热菌属(Thermus)微生物占主要优势,相对丰度占比可达89.4%,此外也有少量嗜氢菌等;等离子体诱变后进一步提高了脱硫的效率,筛选获得的诱变后菌群在65 ℃可将培养液中8.88 mg/L的硫化物快速去除,去除率最高达100%,去除速率高达0.49 mg/(L·h)。【结论】通过对水样中菌群进行高温驯化和等离子体诱变,获得了耐65 ℃高温的高效脱硫菌群,提升了配聚水硫化物脱除效果,对高温油田的开发意义重大。

    Abstract:

    [Background] The sulfide in the produced water of offshore oilfield often exceeds the limit, which affects the viscosity of the polymer-containing injection water. The efficiency of biodesulfurization is poor due to the poor adaptability of conventional mesophilic sulfide-removing bacteria to the high temperature of the produced water after oil removal. [Objective] To analyze the changes of microbial consortium structure in the process of offshore produced water treatment and acclimate a thermophilic bacterial consortium for desulfurization. [Methods] Water samples were collected from Haisan Station of Shengli Oilfield, and 16S rRNA gene sequencing was performed to reveal the structure of the bacterial consortium. The acclimation was conducted in the inorganic medium at different temperatures (55, 60, and 65 °C) for multiple rounds, and atmospheric and room temperature plasma (ARTP) was employed to obtain the efficient thermophilic desulfurizing bacteria. Metagenome sequencing was employed to study the composition of the enriched bacterial consortium and then the desulfurizing ability of the consortium was determined. [Results] The produced water samples contained abundant thermophilic bacteria and sulfate-reducing bacteria, such as Thermodesulfovibrio, Pseudothermotoga, Thermolithobacter, Fervidobacterium, Thermovenabulales, and Pseudomonas. Hydrogenophilus became the most dominant bacteria in the effluent from the nitrogen gas-floated oil removal. The relative abundance of Hydrogenophilus in the effluent water of the central platform and the polymer injection platform was 76% and 84%, respectively. After the enrichment and acclimation with increasing temperature, Thermus became predominant, with the relative abundance of 89.4%, in addition to a few members of Hydrogenophilus. The efficiency of desulfurization was further improved by ARTP. The acclimated bacterial consortium could rapidly desulfurize the liquid containing 8.88 mg/L sulfide at 65 °C, with a removal rate of 100% and a removal speed up to 0.49 mg/(L·h). [Conclusion] An efficient desulfurizing bacterial consortium adapted to 65 ℃ was obtained, which improved the desulfurization of polymer-containing injection water. This study would be helpful for the development of high-temperature oil fields.

    参考文献
    [1] 杨德敏, 袁建梅, 谢崇文, 王兵. 气田高浓度含硫废水的化学氧化处理[J]. 环境工程学报, 2014, 8(11):4757-4761. YANG DM, YUAN JM, XIE CW, WANG B. Treatment of high concentration sulfide wastewater from gas fields by chemical oxidation process[J]. Chinese Journal of Environmental Engineering, 2014, 8(11):4757-4761(in Chinese).
    [2] 王振. 污水配制聚合物溶液黏度的影响因素及其机理探讨[D]. 青岛:中国石油大学硕士学位论文, 2009. WANG Z. Influencing factors and mechanism discussed on the viscosity of polymer solution preprated by oilfield produced water[D]. Qingdao:Master's Thesis of China University of Petroleum (East China), 2009(in Chinese).
    [3] 郭省学, 徐闯, 徐鹏, 王淋, 袁长忠, 张守献, 汤晓东, 汪卫东. 孤岛油田污水生物脱硫保黏技术应用[J]. 现代化工, 2018, 38(1):180-182. GUO SX, XU C, XU P, WANG L, YUAN CZ, ZHANG SX, TANG XD, WANG WD. Application of biological desulfurization and viscosity retention technology for wastewater in Gudao Oilfield[J]. Modern Chemical Industry, 2018, 38(1):180-182(in Chinese).
    [4] 潘永强. 微生物水处理技术在胜利油田污水资源化利用中的应用[J]. 化工管理, 2015(32):108-110. Pan YQ. Application of microbial water treatment technology in the resource utilization of sewage in Shengli Oil Field[J]. Chemical Engineering Management, 2015(32):108-110(in Chinese).
    [5] 王兵, 陈丹丹, 任宏洋, 李永涛, 王丹, 林奇. 高含硫废水受控氧化的混凝强化研究[J]. 工业水处理, 2016, 36(7):29-33, 34. WANG B, CHEN DD, REN HY, LI YT, WANG D, LIN Q. Study on the controIIed oxidation of coaguIation enhancement used on highly concentrated surfur-bearing wastewater[J]. Industrial Water Treatment, 2016, 36(7):29-33, 34(in Chinese).
    [6] KWANG-DEOG J. Catalytic wet oxidation of H2S to sulfur on Fe/MgO catalyst[J]. Applied Catalysis A:General, 2003, 240(1-2):235-241.
    [7] 向波涛, 王涛, 刘军, 沈忠耀. 超临界水氧化法处理含硫废水研究[J]. 化工环保, 1999, 19(2):75-79. XIANG BT, WANG T, LIU J, SHEN ZY. Treatment of sulphur-containing wastewater by supercritical water oxidation process[J]. Environmental Protection of Chemical Industry, 1999, 19(2):75-79(in Chinese).
    [8] 宫磊. 生物催化氧化法处理H2S废气的工艺及理论研究[D]. 昆明:昆明理工大学博士学位论文, 2005. GONG L. The Process and theoretical study on the treatment of H2S waste gas by biocatalysis oxidation[D]. Kunming:Doctoral Dissertation of kunming University of Science and Technology, 2005(in Chinese).
    [9] ZHANG LH, de SCHRYVER P, de GUSSEME B, de MUYNCK W, BOON N, VERSTRAETE W. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems:a review[J]. Water Research, 2008, 42(1/2):1-12.
    [10] 金小达, 刘广兵. 烟气生物脱硫技术的特点[J]. 环境科技, 2010, 23(2):31-34. JIN XD, LIU GB. Characteristic of flue gas biodesulfurization technology[J]. Environmental Science and Technology, 2010, 23(2):31-34(in Chinese).
    [11] 杨旭, 吴晓玲. 含硫污水处理方法综述[J]. 油气田环境保护, 1994, 4(3):59-61. YANG X, WU X. A summary of the literature on sour water treatment[J]. Environmental Protection of Oil & Gas Fields, 1994, 4(3):59-61(in Chinese).
    [12] Ye J, Zhang P, Zhang G, Wang S, Nabi M, Zhang Q, Zhang H. Biodesulfurization of high sulfur fat coal with indigenous and exotic microorganisms[J]. Journal of Cleaner Production, 2018, 197:562-570.
    [13] HU TT, YANG Y, ZHANG MJ, GAO Y, CHENG Q, JI HJ. Biodesulfurization of coal using Rhodococcus erythropolis SX-12 and Acidithiobacillus ferrooxidans GF:a two-step approach[J]. Energy Science and Engineering, 2019, 7(1):162-169.
    [14] ETEMADIFAR Z, ETEMADZADEH SS, EMTIAZI G. A novel approach for bioleaching of sulfur, iron, and silica impurities from coal by growing and resting cells of Rhodococcus spp.[J]. Geomicrobiology Journal, 2019, 36(2):123-129.
    [15] 李敏, 王琦, 魏菁, 刘继军, 高云航. 粪产碱杆菌的分离鉴定及其生物转化作用[J]. 微生物学通报, 2021, 48(10):3612-3620. LI M, WANG Q, WEI J, LIU JJ, GAO YH. Isolation, identification and biotransforming of Alcaligenes faecalis[J]. Microbiology China, 2021, 48(10):3612-3620(in Chinese).
    [16] FENG SS, LIN X, TONG YJ, HUANG X, YANG HL. Biodesulfurization of sulfide wastewater for elemental sulfur recovery by isolated Halothiobacillus neapolitanus in an internal airlift loop reactor[J]. Bioresource Technology, 2018, 264:244-252.
    [17] 韩佳悯, 罗剑飞, 林炜铁. 酿酒废水硫氧化细菌的分离鉴定及其硫氧化特性[J]. 现代食品科技, 2020, 36(6):155-160. HAN JM, LUO JF, LIN WT. Isolation and identification of sulfur-oxidizing bacterium from brewery wastewater and its sulfur-oxidizing characteristics[J]. Modern Food Science and Technology, 2020, 36(6):155-160(in Chinese).
    [18] MORI YM, TADA CK, FUKUDA Y, NAKAI Y. Diversity of sulfur-oxidizing bacteria at the surface of cattle manure composting assessed by an analysis of the sulfur oxidation gene soxB[J]. Microbes and Environments, 2020, 35(3):ME18066.
    [19] HOU NK, XIA YZ, WANG X, LIU HW, LIU HL, XUN LY. H2S biotreatment with sulfide-oxidizing heterotrophic bacteria[J]. Biodegradation, 2018, 29(6):511-524.
    [20] KHANONGNUCH R, di CAPUA F, LAKANIEMI A. H2S removal and microbial community composition in an anoxic biotrickling filter under autotrophic and mixotrophic conditions[J]. Journal of Hazardous Materials, 2019, 367:397-406.
    [21] 李亚新, 储江林, 池勇志. 无色硫菌氧化SRB还原硫酸盐产物硫化氢生成单质硫[J]. 城市环境与城市生态, 2002, 15(5):4-7. LI YX, CHU JL, CHI Y. Removal of sulfide produced by sulfate-reducing bacteria from wastewater and conversion to elementary sulfur by colorless sulfur bacteria[J]. Urban Environment & Urban Ecology, 2002, 15(5):4-7(in Chinese).
    [22] 左剑恶, 袁琳, 胡纪萃, 顾夏声. 利用无色硫细菌氧化废水中硫化物的研究[J]. 环境科学, 1995, 16(6):7-10. ZUO JE, YUAN L, HU JC, GU XS. Biotechnological removal of sulfides in the effluent from sulfate reducing reactors[J]. Chinese Journal of Enviromental Science, 1995, 16(6):7-10(in Chinese).
    [23] KRISHNAKUMAR B, MAJUMDAR S, MANILAL VB, HARIDAS A. Treatment of sulphide containing wastewater with sulphur recovery in a novel reverse fluidized loop reactor (RFLR)[J]. Water Research, 2005, 39(4):639-647.
    [24] WANG R, LIN JQ, LIU XM, PANG X, ZHANG CJ, YANG CL, GAO XY, LIN CM, LI YQ, LI Y, LIN JQ, CHEN LX. Sulfur oxidation in the acidophilic autotrophic Acidithiobacillus spp.[J]. Frontiers in Microbiology, 2019, 9:3290.
    [25] Cano PI, Colón J, Ramírez M. Life cycle assessment of different physical-chemical and biological technologies for biogas desulfurization in sewage treatment plants[J]. Journal of Cleaner Production, 2018, 181:663-674.
    [26] Chen Y, Wen Y, Zhou Q. Sulfate removal and sulfur transformation in constructed wetlands:the roles of filling material and plant biomass[J]. Water Research, 2016, 102:572-581.
    [27] Yousef N, Mawad A, Aldaby E, Hassanein M. Isolation of sulfur oxidizing bacteria from polluted water and screening for their efficiency of sulfide oxidase production[J]. Global Nest Journal, 2019, 21(3):259-264.
    [28] Sun Z, Pang B, Xi J. Screening and characterization of mixotrophic sulfide oxidizing bacteria for odorous surface water bioremediation[J]. Bioresource Technology, 2019, 290:121721.
    [29] 徐鹏. 孤岛污水深度处理配聚试验研究[J]. 环境工程, 2015, 33(S1):1008-1010, 1017. XU P. Experimental study on further treatment of wastewater to prepare polymer in Gudao Oilfield[J]. Environmental Engineering, 2015, 33(S1):1008-1010, 1017(in Chinese).
    [30] 陈莉, 赵艺, 周雨洁, 李伟光. 一株耐高温硫氧化菌爱媛类芽孢杆菌的分离鉴定及其发酵条件优化[J]. 微生物学通报, 2022, 49(1):25-38. CHEN L, ZHAO Y, ZHOU YJ, LI WG. Isolation, identification and fermentation optimization of a thermophilic sulfide-oxidizing strain Paenibacillus ehimensis[J]. Microbiology China, 2022, 49(1):25-38(in Chinese).
    [31] 国家环保局本书编委会. 水和废水监测分析方法(第四版)[M]. 北京:中国环境科学出版社, 2002. Editorial Committee of the National Environmental Protection Agency. Water and Wastewater Monitoring and Analysis Methods (Fourth Edition)[M]. Beijing:China Environmental Science Press, 2002(in Chinese).
    [32] WANG LY, HUANG ZL, LI G, ZHAO HX, XING XH, SUN WT, LI HP, GOU ZX, BAO CY. Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma[J]. Journal of Applied Microbiology, 2010, 108(3):851-858.
    [33] 赵苗苗, 李茹, 李翰林, 李飞洋. 低温等离子体诱变选育高效脱硫菌的研究[J]. 应用化工, 2016, 45(2):240-244, 248. ZHAO MM, LI R, LI HL, LI FY. Study on breeding of efficient desulfurization bacteria muted by low temperature plasma[J]. Applied Chemical Industry, 2016, 45(2):240-244, 248(in Chinese).
    [34] Liu RM, Liang LY, Ma JF, Ren XY, Jiang M, Chen KQ, Wei P, Ouyang PK. An engineering Escherichia coli mutant with high succinic acid production in the defined medium obtained by the atmospheric and room temperature plasma[J]. Process Biochemistry, 2013, 48(11):1603-1609.
    [35] Yuan L, Wang L, Ma K. Characteristics of hydrogen production of an Enterobacter aerogenes mutant generated by a new atmospheric and room temperature plasma (ARTP)[J]. Biochemical Engineering Journal, 2011, 55(1):17-22.
    [36] Hua XF, Wang J, Wu ZJ, Zhang HX, Li HP, Xing XH, Liu Z. A salt tolerant Enterobacter cloacae mutant for bioaugmentation of petroleum- and salt-contaminated soil[J]. Biochemical Engineering Journal, 2010, 49(2):201-206.
    [37] GUO T, TANG Y, XI YL, HE AY, SUN BJ, WU H, LIANG DF, JIANG M, OUYANG PK. Clostridium beijerinckii mutant obtained by atmospheric pressure glow discharge producing high proportions of butanol and solvent yields[J].Biotechnology Letters, 2011, 33(12):2379-2383.
    [38] 纪梦梦, 吴晓刚, 吴欣欣, 吴巧玉, 李冀, 秦先超, 张晓君. 过量施肥对设施菜田土壤菌群结构及N2O产生的影响[J]. 微生物学通报, 2018, 45(6):1323-1332. JI MM, WU XG, WU XX, WU QY, LI J, QIN XC, ZHANG XJ. Effect of overuse nitrogen fertilizer on bacterial community and N2O emission from greenhouse soil[J]. Microbiology China, 2018, 45(6):1323-1332(in Chinese).
    [39] ZHANG QP, WU YQ, WANG J, WU GJ, LONG WM, XUE ZS, WANG LH, ZHANG XJ, PANG XY, ZHAO YF, ZHAO LP, ZHANG CH. Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium[J]. Scientific Reports, 2016, 6:27572.
    [40] 贡俊, 张肇铭, 王玉芬, 杨官娥, 郑军, 程红兵, 李保珍. 一株高效脱硫菌的分离鉴定和脱硫特性研究[J]. 环境工程学报, 2009, 3(11):2031-2036. GONG J, ZHANG ZM, WANG YF, YANG GE, ZHENG J, CHENG HB, LI BZ. Isolation, identification and desulfurization characteristics of an efficient desulfurization strain[J]. Chinese Journal of Environmental Engineering, 2009, 3(11):2031-2036(in Chinese).
    [41] 董晓莹, 赵勇, 寇巍, 李世密, 曲静霞, 张大雷. 一株脱硫菌的鉴定及其对H2S的降解能力[J]. 生态与农村环境学报, 2012, 28(2):213-216. DONG XY, ZHAO Y, KOU W, LI SM, QU JX, ZHANG DL. Identification of a desulfurizing strain and its H2S degrading capacity[J]. Journal of Ecology and Rural Environment, 2012, 28(2):213-216(in Chinese).
    [42] 张建斌, 梅清科, 张通, 刘占英, 刘丽华, 张冬艳. 一株耐高温碱性脱硫菌的分离及脱除Na2S的性能研究[J]. 内蒙古工业大学学报(自然科学版), 2011(2):123-128. ZHANG JB, MEI QK, ZHANG T, LIU ZY, LIU LH, ZHANG D. Isolation of a thermophilic alkaline desulfuricant strain and its biological decomposition of Na2S[J]. Journal of Inner Mongolia University of Technology (Natural Science Edition), 2011(2):123-128(in Chinese).
    [43] LI HP, LI J, ZHAO XT, WANG LY, FANG C, SU N, ZHANG C, XU Y, LV M, LI MJ, XING XH. Applications of cold atmospheric plasmas (CAPs) in agriculture:a brief review and the novel development of a radio-frequency CAP jet generator for plant mutation[J]. Plasma Science and Technology, 2022, 24(9):093001.
    [44] Kristjánsson JK, Hjörleifsdóttir S, Marteinsson VT. Thermus scotoductus, sp. nov., a pigment-producing thermophilic bacterium from hot tap water in Iceland and including Thermus sp. X-1[J]. Systematic and Applied Microbiology, 1994, 17(1):44-50.
    [45] SKIRNISDOTTIR S, HREGGVIDSSON GO, HOLST O, KRISTJANSSON JK. Isolation and characterization of a mixotrophic sulfur-oxidizing Thermus scotoductus[J]. Extremophiles, 2001, 5(1):45-51.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曹功泽,林军章,徐闯,谢珍,刘璟璇,袁长忠,江怡然,徐鹏,徐博文,张晓君. 油藏注入水靶向脱硫潜力的高温脱硫菌群富集驯化[J]. 微生物学通报, 2023, 50(8): 3550-3561

复制
分享
文章指标
  • 点击次数:235
  • 下载次数: 791
  • HTML阅读次数: 617
  • 引用次数: 0
历史
  • 收稿日期:2023-04-19
  • 录用日期:2023-05-25
  • 在线发布日期: 2023-08-08
  • 出版日期: 2023-08-20
文章二维码