科微学术

微生物学通报

一株同时携带optrA和cfrC基因的猪源多重耐药结肠弯曲菌的全基因组测序
作者:
基金项目:

国家自然科学基金(31700005);江苏省农业科技自主创新资金(CX(21)2011);江苏现代农业产业技术体系建设专项资金(JATS[2022]402)


Whole genome sequencing of a porcine multiresistant Campylobacter coli strain carrying both optrA and cfrC
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    【背景】弯曲菌(Campylobacter)是一种世界范围内能引起胃肠炎的最常见食源性病原菌,对临床上重要的抗菌药物耐药越来越严重,对食品安全和公共健康造成重大威胁。【目的】研究一株同时携带optrA和cfrC基因的猪源结肠弯曲菌(Campylobacter coli)耐药表型和耐药基因,同时对该菌全基因组特征、毒力基因分布情况以及optrA和cfrC基因环境进行分析。【方法】采用琼脂平板稀释法进行最低抑菌浓度(minimal inhibitory concentration, MIC)测定,并且对该菌进行全基因组测序。【结果】该菌株对四环素、克林霉素、阿奇霉素、氟苯尼考和利奈唑胺呈现高度耐药,对环丙沙星和庆大霉素敏感。全基因组测序得到一条大小为1 436 486 bp的环状DNA (GC含量为31.63%),携带四大类抗生素中共计12种耐药基因,均定位于染色体上,其中氨基糖苷类耐药基因数量最多。此外,携带包含黏附、侵袭和移动等相关毒力基因83个,其中与移动相关的毒力基因数量最多。对4个基因岛分析发现,基因岛GIs002和GIs003中含有耐药基因序列,cfrC位于基因岛GIs002上,与aph(3')-IIIa相连,两侧与转座酶相连,optrA位于染色体上,在其上、下游两侧与插入序列integrase/IS607 family相连,转座酶和插入序列可介导耐药基因水平转移。【结论】本研究通过全基因组测序分析了多重耐药结肠弯曲菌的基因组信息以及存在的耐药及毒力基因情况,可移动遗传元件(转座酶和插入序列)在结肠弯曲菌耐药传播中起着重要作用,该研究结果为弯曲菌耐药风险评估提供了参考依据。

    Abstract:

    [Background] Campylobacter is a common group of foodborne pathogens that can cause gastroenteritis in the world. It is increasingly resistant to clinically important antibiotics and poses a serious threat to food safety and public health. [Objective] To investigate the resistance phenotype and genes of a Campylobacter coli strain carrying both optrA and cfrC, the whole genome characteristics of the strain, the distribution of virulence genes, and the gene environments of optrA and cfrC. [Methods] Agar dilution method was employed to determine the minimal inhibitory concentrations (MIC). Whole genome sequencing (WGS) was carried out to sequence the DNA of the strain. [Results] The strain was highly resistant to tetracycline, clindamycin, azithromycin, florfenicol, and linezolid, and sensitive to ciprofloxacin and gentamicin. WGS identified a circular DNA with a size of 1 436 486 bp (GC content of 31.63%), which carried 12 resistance genes involving four major categories of antibiotics. All of the 12 genes were detected on the chromosome, most of which were aminoglycoside resistance genes. A total of 83 virulence genes involved in adherence, invasion and motility were identified, and most of them were associated with motility. The gene islands GIs002 and GIs003 contained resistance genes. CfrC was located on the GIs002, linked with aph(3')-Ⅲa and flanked by two transposons. OptrA was located on chromosome and connected to the insertion sequence Integrase/IS607 family at upstream and downstream sides. Transposon and insertion sequence could mediate the horizontal transfer of resistance genes. [Conclusion] The genome information, resistance genes, and virulence genes of a multiresistant C. coli strain were analyzed by WGS. The mobile genetic elements (transposase and insertion sequence) played an important role in the transmission of antibiotic resistance of C. coli. The findings provide basic information for risk assessment of antibiotic resistance of Campylobacter.

    参考文献
    [1] EUROPEAN FOOD SAFETY AUTHORITY, EUROPEAN CENTRE FOR DISEASE PREVENTION AND CONTROL. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012[J]. EFSA Journal, 2014, 12(2):3547.
    [2] MAN SM. The clinical importance of emerging Campylobacter species[J]. Nature Reviews Gastroenterology & Hepatology, 2011, 8(12):669-685.
    [3] GILLESPIE IA, O՚BRIEN SJ, FROST JA, ADAK GK, HORBY P, SWAN AV, PAINTER MJ, NEAL KR, COLLABORATORS CSSS. A case-case comparison of Campylobacter coli and Campylobacter jejuni infection:a tool for generating hypotheses[J]. Emerging Infectious Diseases, 2002, 8(9):937-942.
    [4] TAM CC, O'BRIEN SJ, ADAK GK, MEAKINS SM, FROST JA. Campylobacter coli-an important foodborne pathogen[J]. The Journal of Infection, 2003, 47(1):28-32.
    [5] HERMANS D, PASMANS F, MESSENS W, MARTEL A, van IMMERSEEL F, RASSCHAERT G, HEYNDRICKX M, van DEUN K, HAESEBROUCK F. Poultry as a host for the zoonotic pathogen Campylobacter jejuni[J]. Vector Borne and Zoonotic Diseases (Larchmont, N Y), 2012, 12(2):89-98.
    [6] GROVE-WHITE DH, LEATHERBARROW AH, CRIPPS PJ, DIGGLE PJ, FRENCH NP. Temporal and farm-management-associated variation in the faecal-pat prevalence of Campylobacter jejuni in ruminants[J]. Epidemiology and Infection, 2010, 138(4):549-558.
    [7] KEMPF I, KEROUANTON A, BOUGEARD S, NAGARD B, ROSE V, MOURAND G, OSTERBERG J, DENIS M, BENGTSSON BO. Campylobacter coli in organic and conventional pig production in France and Sweden:prevalence and antimicrobial resistance[J]. Frontiers in Microbiology, 2017, 8:955.
    [8] MATARAGAS M, SKANDAMIS PN, DROSINOS EH. Risk profiles of pork and poultry meat and risk ratings of various pathogen/product combinations[J]. International Journal of Food Microbiology, 2008, 126(1/2):1-12.
    [9] Di DONATO G, MAROTTA F, NUVOLONI R, ZILLI K, NERI D, Di SABATINO D, CALISTRI P, Di GIANNATALE E. Prevalence, population diversity and antimicrobial resistance of Campylobacter coli isolated in Italian swine at slaughterhouse[J]. Microorganisms, 2020, 8(2):222.
    [10] RIEDEL C, FÖRSTNER KU, PÜNING C, ALTER T, SHARMA CM, GÖLZ G. Differences in the transcriptomic response of Campylobacter coli and Campylobacter lari to heat stress[J]. Frontiers in Microbiology, 2020, 11:523.
    [11] NIEDERER L, KUHNERT P, EGGER R, BÜTTNER S, HÄCHLER H, KORCZAK BM. Genotypes and antibiotic resistances of Campylobacter jejuni and Campylobacter coli isolates from domestic and travel-associated human cases[J]. Applied and Environmental Microbiology, 2012, 78(1):288-291.
    [12] KAAKOUSH NO, CASTAÑO-RODRÍGUEZ N, MITCHELL HM, MAN SM. Global epidemiology of Campylobacter infection[J]. Clinical Microbiology Reviews, 2015, 28(3):687-720.
    [13] O'KANE PM, CONNERTON IF. Characterisation of aerotolerant forms of a robust chicken colonizing Campylobacter coli[J]. Frontiers in Microbiology, 2017, 8:513.
    [14] LIU HB, WANG Y, WU CM, SCHWARZ S, SHEN ZQ, JEON B, DING SY, ZHANG QJ, SHEN JZ. A novel phenicol exporter gene, fexB, found in enterococci of animal origin[J]. Journal of Antimicrobial Chemotherapy, 2012, 67(2):322-325.
    [15] KEHRENBERG C, SCHWARZ S. FexA, a novel Staphylococcus lentus gene encoding resistance to florfenicol and chloramphenicol[J]. Antimicrobial Agents and Chemotherapy, 2004, 48(2):615-618.
    [16] FAN R, FEßLER AT, WU C, SCHWARZ S, WANG Y. Distribution of optrA and cfr in florfenicol-resistant Staphylococcus sciuri of pig origin[J]. Veterinary Microbiology, 2017, 210:43-48.
    [17] ANTONELLI A, D'ANDREA MM, BRENCIANI A, GALEOTTI CL, MORRONI G, POLLINI S, VARALDO PE, ROSSOLINI GM. Characterization of poxtA, a novel phenicol-oxazolidinone-tetracycline resistance gene from an MRSA of clinical origin[J]. Journal of Antimicrobial Chemotherapy, 2018, 73(7):1763-1769.
    [18] TANG YZ, DAI L, SAHIN O, WU ZW, LIU MY, ZHANG QJ. Emergence of a plasmid-borne multidrug resistance gene cfr(C) in foodborne pathogen Campylobacter[J]. Journal of Antimicrobial Chemotherapy, 2017, 72(6):1581-1588.
    [19] TANG YZ, LAI Y, YANG XT, CAO XT, HU YW, WANG XY, WANG HN. Genetic environments and related transposable elements of novel cfr(C) variants in Campylobacter coli isolates of swine origin[J]. Veterinary Microbiology, 2020, 247:108792.
    [20] YAO H, SHEN ZQ, WANG Y, DENG FR, LIU DJ, NAREN GW, DAI L, SU CC, WANG B, WANG SL, WU CM, YU EW, ZHANG QJ, SHEN JZ. Emergence of a potent multidrug efflux pump variant that enhances Campylobacter resistance to multiple antibiotics[J]. mBio, 2016, 7(5):e01543-e01516.
    [21] TANG B, TANG YZ, ZHANG L, LIU X, CHANG J, XIA XD, YANG H, SHEN ZQ. Emergence of fexA in mediating resistance to florfenicols in Campylobacter[J]. Antimicrobial Agents and Chemotherapy, 2020, 64(7):e00260-e00220.
    [22] LIU DJ, YANG DW, LIU X, LI X, FEßLER AT, SHEN ZQ, SHEN JZ, SCHWARZ S, WANG Y. Detection of the enterococcal oxazolidinone/phenicol resistance gene optrA in Campylobacter coli[J]. Veterinary Microbiology, 2020, 246:108731.
    [23] TANG YZ, LAI Y, WANG XY, LEU CW, LI C, KONG LH, WANG YL, WANG HN. Novel insertion sequence ISChh1-like mediating acquisition of optrA gene in foodborne pathogen Campylobacter coli of swine origin[J]. Veterinary Microbiology, 2020, 252:108934.
    [24] LONG KS, POEHLSGAARD J, KEHRENBERG C, SCHWARZ S, VESTER B. The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin a antibiotics[J]. Antimicrobial Agents and Chemotherapy, 2006, 50(7):2500-2505.
    [25] SCHWARZ S, WERCKENTHIN C, KEHRENBERG C. Identification of a plasmid-borne chloramphenicol- florfenicol resistance gene in Staphylococcus sciuri[J]. Antimicrobial Agents and Chemotherapy, 2000, 44(9):2530-2533.
    [26] RAMIREZ MS, TOLMASKY ME. Aminoglycoside modifying enzymes[J]. Drug Resistance Updates:Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 2010, 13(6):151-171.
    [27] JANA S, DEB JK. Molecular understanding of aminoglycoside action and resistance[J]. Applied Microbiology and Biotechnology, 2006, 70(2):140-150.
    [28] ZHAO S, MUKHERJEE S, LI C, JONES SB, YOUNG S, McDERMOTT PF. Cloning and expression of novel aminoglycoside phosphotransferase genes from Campylobacter and their role in the resistance to six aminoglycosides[J]. Antimicrobial Agents and Chemotherapy, 2017, 62(1):e01682-e01617.
    [29] CHOPRA I, ROBERTS M. Tetracycline antibiotics:mode of action, applications, molecular biology, and epidemiology of bacterial resistance[J]. Microbiology and Molecular Biology Reviews:MMBR, 2001, 65(2):232-260; second page, table of contents.
    [30] GIBREEL A, TRACZ DM, NONAKA L, NGO TM, CONNELL SR, TAYLOR DE. Incidence of antibiotic resistance in Campylobacter jejuni isolated in Alberta, Canada, from 1999 to 2002, with special reference to tet(O)-mediated tetracycline resistance[J]. Antimicrobial Agents and Chemotherapy, 2004, 48(9):3442-3450.
    [31] LI WJ, JIAO D, KANG J, YU RH, ZHAO WB, XU CY, LI RC, DU XD, YAO H. Emergence of lnu(C) variant conferring lincomycin resistance in Campylobacter coli of chicken origin[J]. International Journal of Food Microbiology, 2023, 388(2):110098.
    [32] WANG Y, DONG YN, DENG FR, LIU DJ, YAO H, ZHANG QJ, SHEN JZ, LIU ZH, GAO YN, WU CM, SHEN ZQ. Species shift and multidrug resistance of Campylobacter from chicken and swine, China, 2008-14[J]. Journal of Antimicrobial Chemotherapy, 2016, 71(3):666-669.
    [33] PEARSON BM, LOUWEN R, van BAARLEN P, van VLIET AHM. Differential distribution of type II CRISPR-cas systems in agricultural and nonagricultural Campylobacter coli and Campylobacter jejuni isolates correlates with lack of shared environments[J]. Genome Biology and Evolution, 2015, 7(9):2663-2679.
    [34] BOLTON DJ. Campylobacter virulence and survival factors[J]. Food Microbiology, 2015, 48:99-108.
    [35] BURNHAM PM, HENDRIXSON DR. Campylobacter jejuni:collective components promoting a successful enteric lifestyle[J]. Nature Reviews Microbiology, 2018, 16(9):551-565.
    [36] CANTERO G, CORREA-FIZ F, RONCO T, STRUBE M, CERDÀ-CUÉLLAR M, PEDERSEN K. Characterization of Campylobacter jejuni and Campylobacter coli broiler isolates by whole-genome sequencing[J]. Foodborne Pathogens and Disease, 2018, 15(3):145-152.
    [37] 梁昊. 弯曲菌快速检测及基因组水平遗传特征分析[D]. 北京:中国疾病预防控制中心博士学位论文, 2019.LIANG H. Rapid detection of Campylobacter and analysis of genetic characteristics at genome level[D]. Beijing:Doctoral Dissertation of Chinese Center for Disease Control and Prevention, 2019(in Chinese).
    [38] KARLYSHEV AV, CHAMPION OL, CHURCHER C, BRISSON JR, JARRELL HC, GILBERT M, BROCHU D, ST MICHAEL F, LI JJ, WAKARCHUK WW, GOODHEAD I, SANDERS M, STEVENS K, WHITE B, PARKHILL J, WREN BW, SZYMANSKI CM. Analysis of Campylobacter jejuni capsular loci reveals multiple mechanisms for the generation of structural diversity and the ability to form complex heptoses[J]. Molecular Microbiology, 2005, 55(1):90-103.
    [39] RICHARDS VP, LEFÉBURE T, PAVINSKI BITAR PD, STANHOPE MJ. Comparative characterization of the virulence gene clusters (lipooligosaccharide[LOS] and capsular polysaccharide[CPS]) for Campylobacter coli, Campylobacter jejuni subsp. jejuni and related Campylobacter species[J]. Infection, Genetics and Evolution:Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 2013, 14:200-213.
    [40] PARKER CT, GILBERT M, YUKI N, ENDTZ HP, MANDRELL RE. Characterization of lipooligosaccharide-biosynthetic loci of Campylobacter jejuni reveals new lipooligosaccharide classes:evidence of mosaic organizations[J]. Journal of Bacteriology, 2008, 190(16):5681-5689.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

唐梦君,张小燕,周倩,陆俊贤,唐修君,张静,杨星星,陈薇,高玉时. 一株同时携带optrA和cfrC基因的猪源多重耐药结肠弯曲菌的全基因组测序[J]. 微生物学通报, 2023, 50(8): 3538-3549

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-07
  • 录用日期:2023-03-22
  • 在线发布日期: 2023-08-08
  • 出版日期: 2023-08-20
文章二维码