科微学术

微生物学通报

水稻纹枯病菌多聚半乳糖醛酸酶基因RsPG5的克隆与功能分析
作者:
基金项目:

江苏省碳达峰碳中和科技创新项目(BE2022425)


Cloning and function analysis of polygalacturonase gene RsPG5 in Rhizoctonia solani, the pathogen of rice sheath blight
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】纹枯病是水稻最重要的病害之一,目前对其病菌致病机制的研究还较少。【目的】鉴定更多水稻纹枯病菌致病基因,为纹枯病的防治提供理论依据。【方法】采用3'-RACE方法获得RsPG5基因全长,并使用ExPASy等在线软件对其编码产物的结构及生物学特性进行分析,测定其编码产物的致病功能。【结果】RsPG5具有7个外显子和6个内含子,编码区全长1 263 bp,可编码420个氨基酸。编码产物为糖苷水解酶GH28家族成员,具有真菌多聚半乳糖醛酸酶特有的保守序列NTD、DD、GHG和RF(I)K,并且有一个含15个氨基酸的信号肽;二级结构由α-螺旋、β-折叠和随机卷曲螺旋构成,并且可形成4个二硫键;三级结构为由α-螺旋、β-折叠和随机卷曲螺旋按右手螺旋规则形成的具有裂隙区的特定空间结构,裂隙区可能负责着其酶活功能。生物学性质预测表明,RsPG5为稳定、易溶于水的外泌性蛋白,主要定位于细胞壁、液泡和线粒体。RsPG5具有明显的多聚半乳糖醛酸酶活性,可分解果胶,破坏水稻叶鞘细胞;针刺接种分蘖末期水稻叶鞘,72 h后可形成明显的褐色坏死斑;将纹枯病菌接种至水稻叶鞘,在病菌致病过程中RsPG5可上调表达。【结论】RsPG5是一个典型的多聚半乳糖醛酸酶蛋白,为水稻纹枯病菌的重要致病因子。

    Abstract:

    [Background] Sheath blight, caused by Rhizoctonia solani, is one of the major devastated rice diseases in the world, while little is known about the pathogenic mechanism of the pathogen. [Objective] To identify more virulence genes from R. solani and provide a theoretical basis for the control of sheath blight. [Methods] The full-length sequence of RsPG5 was obtained by 3'-RACE, and the structure and biological properties of the deduced protein were predicted by ExPASy online. The pathogenic function of RsPG5 was then determined. [Results] RsPG5 harbored seven exons and six introns, with the coding region of 1 263 bp, which encoded 420 amino acid residues. RsPG5, one member of the glucoside hydrolase family 28, contained a signal peptide of 15 residues and NTD, DD, GHG and RF(I)K domains conserved in the polygalacturonases from fungi. The secondary structure of the deduced protein contained 4 disulfide bonds, α-helix, β-sheet, and random coil, which arranged according to right-handed helix and formed a cleft that was responsible for the enzyme activity. RsPG5 was a stable, water-soluble, exocrine protein localized in cell wall, vacuole, and mitochondria. The eukaryotic expression products of RsPG5 had the polygalacturonase activity to hydrolyze pectin and destroy the sheath cells of rice. Distinct brown necrotic spots appeared 72 h after the expression products were inoculated in the rice sheathes by a needle. The expression level of RsPG5 was up-regulated in the infection course of R. solani. [Conclusion] RsPG5 is a typical polygalacturonase and a major pathogenic factor of R. solani.

    参考文献
    [1] 刘万才, 刘振东, 黄冲, 陆明红, 刘杰, 杨清坡. 近10年农作物主要病虫害发生危害情况的统计和分析[J]. 植物保护, 2016, 42(5):1-9, 46.Liu WC, Liu ZD, Huang C, Lu MH, Liu J, Yang QP. Statistics and analysis of crop yield losses caused by main diseases and insect pests in recent 10 years[J]. Plant Protection, 2016, 42(5):1-9, 46(in Chinese).
    [2] Zheng AP, Lin RM, Zhang DH, Qin PG, Xu LZ, Ai P, Wang YR, Chen Y, Liu Y, Sun ZG, Feng HT, Liang XX, Fu RT, Tang CQ, Li Q, Zhang J, Xie ZL, Deng QM, Li SC, Wang SQ, et al. The evolution and pathogenic mechanisms of the rice sheath blight pathogen[J]. Nature Communications, 2013, 4:1424.
    [3] 杨迎青, 杨媚, 兰波, 周而勋, 李湘民. 水稻纹枯病菌致病机理的研究进展[J]. 中国农学通报, 2014, 28:245-250.Yang YQ, Yang M, Lan B, Zhou EX, Li XM. Research progress in pathogenic mechanisms of rice sheath blight pathogen[J]. Chinese Agricultural Science Bulletin, 2014, 28:245-250(in Chinese).
    [4] Lin RM, He LY, He JY, Qin PG, Wang YR, Deng QM, Yang XT, Li SC, Wang SQ, Wang WM, Liu HN, Li P, Zheng AP. Comprehensive analysis of microRNA-Seq and target mRNAs of rice sheath blight pathogen provides new insights pathogenic regulatory mechanisms[J]. DNA Research, 2016, 23(5):415-425.
    [5] Razali NM, Hisham SN, Kumar IS, Shukla RN, Nadarajah K. Comparative genomics:insights on the pathogenicity and lifestyle of Rhizoctonia solani[J]. International Journal of Molecular Sciences, 2021, 22(4):2183.
    [6] 张红, 陈夕军, 童蕴慧, 纪兆林, 徐敬友. 纹枯病菌胞壁降解酶对水稻组织和细胞的破坏作用[J]. 扬州大学学报(农业与生命科学版), 2005, 26(4):83-86.Zhang H, Chen XJ, Tong YH, Ji ZL, Xu JY. Destruction of rice tissues and cells by cell wall degrading enzymes of Rhizoctonia solani[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2005, 26(4):83-86(in Chinese).
    [7] 陈夕军, 张红, 徐敬友, 童蕴慧, 纪兆林. 水稻纹枯病菌胞壁降解酶的产生及致病作用[J]. 江苏农业学报, 2006, 22(1):24-28.Chen XJ, Zhang H, Xu JY, Tong YH, Ji ZL. Cell wall degrading enzymes produced by Rhizoctonia solani and their pathogenicity to rice plants[J]. Jiangsu Journal of Agricultural Sciences, 2006, 22(1):24-28(in Chinese).
    [8] Yang YQ, Yang M, Li MH, Zhou EX. Cloning and functional analysis of an endo-PG-encoding gene Rrspg1 of Rhizoctonia solani, the causal agent of rice sheath blight[J]. Canadian Journal of Plant Pathology, 2012, 34(3):436-447.
    [9] Chen XJ, Li LL, Zhang Y, Zhang JY, Ouyang SQ, Zhang QX, Tong YH, Xu JY, Zuo SM. Function analysis of polygalacturonase gene RsPG2 from Rhizoctonia solani, the pathogen of rice sheath blight[J]. European Journal of Plant Pathology, 2017, 149(2):491-502.
    [10] Chen XJ, Li LL, He Z, Zhang JH, Huang BL, Chen ZX, Zuo SM, Xu JY. Molecular cloning and functional analysis of two novel polygalacturonase genes in Rhizoctonia solani[J]. Canadian Journal of Plant Pathology, 2018, 40(1):39-47.
    [11] Oeser B, Heidrich PM, Mller U, Tudzynski P, Tenberge KB. Polygalacturonase is a pathogenicity factor in the Claviceps purpurea/rye interaction[J]. Fungal Genetics and Biology, 2002, 36(3):176-186.
    [12] Kalunke RM, Tundo S, Benedetti M, Cervone F, Lorenzo GD, D'Ovidio R. An update on polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein that protects crop plants against pathogens[J]. Frontiers in Plant Science, 2015, 6:146.
    [13] Gentis S, Guillas I, Sejalon N, Esquerre-Tugaye MT, Dumas B. Endopolygalacturonase genes from Colletotrichum lindemuthianum:cloning of CLPG2 and comparison of its expression to that of CLPG1 during saprophytic and parasitic growth of the fungus[J]. Molecular Plant-Microbe Interactions, 1998, 10(6):769-775.
    [14] Schacht t, unger c, pich a, wydra k. endo- and exopolygalacturonases of Ralstonia solanacearum are inhibited by polygalacturonase-inhibiting protein (PGIP) activity in tomato stem extracts[J]. Plant Physiology Biochemistry, 2011, 49(4):377-387.
    [15] D'Ovidio R, Mattei B, Roberti S, Bellincampi D. Polygalacturoases, polygalacturonase- inhibiting proteins and pectic oligomers in plant-pathogen interactions[J]. Biochimica et Biophysica Acta, 2004, 1696(2):237-244.
    [16] TEN Have A. The Botrytis cinerea endopolygalacturonase gene family[D]. Wageningen:Doctoral Dissertation of Wageningen University, 2000.
    [17] Ruiz GB, Pietro AD, Roncero MIG. Combined action of the major secreted exo- and endopolygalacturonases is required for full virulence of Fusarium oxysporum[J]. Molecular Plant Pathology, 2016, 17(3):339-353.
    [18] Vilanova L, Lopez-Perez M, Ballester AR, Teixido N, Usall J, Lara I, Vinas I, Torres R, Candelas LG. Differential contribution of the two major polygalacturonases from Penicillium digitatum to virulence towards citrus fruit[J]. International Journal of Food Microbiology, 2018, 282(3):16-23.
    [19] 陈夕军, 王友德, 张家豪, 左示敏, 童蕴慧, 潘学彪, 徐敬友. 水稻纹枯病菌Rspg1基因的克隆、表达及其编码产物生物信息学分析[J]. 微生物学报, 2014, 54(4):391-397.Chen XJ, Wang YD, Zhang JH, Zuo SM, Tong YH, Pan XB, Xu JY. Cloning, prokaryotic expression and bioinformatics of Rspg1 gene of Rhizoctonia solani[J]. Acta Microbiologica Sinica, 2014, 54(4):391-397(in Chinese).
    [20] Chen XJ, Chen Y, Zhang LN, Xu B, Chen ZX, Tong YH, Zuo SM, Xu JY. Overexpression of OsPGIP1 enhances rice resistance to sheath blight[J]. Plant Disease, 2016, 100(2):388-395.
    [21] Combet C, Blanchet C, GEourjon C, DelÉage G. NPS@:network protein sequence analysis[J]. Trends in Biochemical Sciences, 2000, 25(3):147-150.
    [22] Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis[J]. Nature Protocols, 2015, 10(6):845-858.
    [23] Desta IT, Porter KA, Xia B, Kozakov D, Vajda S. Performance and its limits in rigid body protein-protein docking[J]. Structure, 2020, 28(9):1071-1081.
    [24] Vajda S, Yueh C, Beglov D, Bohnuud T, Mottarella SE, Xia B, Hall DR, Kozakov D. New additions to the ClusPro server motivated by CAPRI[J]. Proteins:Structure, Function, and Bioinformatics, 2017, 85(3):435-444.
    [25] Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S. The ClusPro web server for protein-protein docking[J]. Nature Protocols, 2017, 12(2):255-278.
    [26] Kozakov D, Beglov D, Bohnuud T, Mottarella SE, Xia B, Hall DR, Vajda S. How good is automated protein docking?[J]. Proteins:Structure, Function, and Bioinformatics, 2013, 81(12):2159-2166.
    [27] Teufel F, Armenteros JJA, Johansen AR, Gislason MH, Pihl SI, Tsirigos KD, Winther O, Brunak S, Heijne GV, Nielsen H. SingalP 6.0 predicts all five types of signal peptides using protein language models[J]. Nature Biotechnology, 2022, 40(7):1023-1025.
    [28] Moller S, Croning MDR, Apweiler R. Evaluation of methods for the prediction of membrane spanning regions[J]. Bioinformatics, 2001, 17(7):646-653.
    [29] Ayers WA, Papavizas GC, Lumsden R. Polygalacturonate trans-eliminase and polygalacturonase production by Rhizoctonia solani[J]. Phytopathology, 1966, 59:925-930.
    [30] Markovic O, Janecek S. Pectin degrading glycoside hydrolases of family 28:sequence-structural features, specificities and evolution[J]. Protein Engineering, 2001, 14(9):615-631.
    [31] Park KC, Kwon SJ, Kim PH, Bureau T, Kim NS. Gene structure dynamics and divergence of the polygalacturonase gene family of plants and fungus[J]. Genome, 2008, 51(1):30-40.
    [32] Raiola A, Castiglioni C, Nesler A, Elmaghraby I, Favaron F. Identification of amino acid residues of Fusarium verticillioides endo-polygalacturonase required to escape the inhibition by host plant PGIP[J]. Journal of Plant Pathology, 2009, 91(S4):83.
    [33] Benedetti M, Andreani F, Leggio C, Galantini L, Matteo AD, Pavel NV, Lorenzo GD, Cervone F, Federici L, Sicilia F. A single amino-acid substitution allows endo- polygalacturonase of Fusarium verticillioides to acquire recognition by PGIP2 from Phaseolus vulgaris[J]. PLoS One, 2013, 8(11):e80610.
    [34] Nakamura M, Iwai H. Functions and mechanisms:polygalacturonases from plant pathogenic fungi as pathogenicity and virulence factors[J]. Journal of General Plant Pathology, 2019, 85(4):243-250.
    [35] Zhang TY, Sun XP, Xu Q, Candelas GL, Li HY. The pH signaling transcription factor PacC is required for full virulence in Penicillium digitatum[J]. Applied Microbiology Biotechnology, 2016, 97(20):9087-9098.
    [36] Liu CQ, Hu KD, Li TT, Yang Y, Yang F, Li YH, Liu HP, Chen XY, Zhang H. Polygalacturonase gene pgxB in Aspergillus niger is a virulence factor in apple fruit[J]. PLoS One, 2017, 12:e0173277.
    [37] Nakamura M, Iwai H, Arai K. Polygalacturonase S31PG1 from Geotrichum candidum citrus race S31 expressed in Schizosaccharomyces pombe versus S31PG2 regarding soft rot on lemon fruit[J]. Journal of General Plant Pathology, 2003, 69(5):283-291.
    [38] Zhou XH, Sayari M, Daayf F. Role of exopolygalacturonase-related genes in potato- Verticillium dahlia interaction[J]. Pathogens, 2021, 10(6):642.
    [39] Leckie F, Mattei B, Capodicasa C, Hemmings A, Nuss L, Aracri B, Lorenzo-G D, Cervone F. The specificity of polygalacturonase- inhibiting protein (PGIP):a single amino acid substitution in the solvent-exposed β-strand/β-turn region of the leucine-rich repeats (LRRs) confers a new recognition capability[J]. The EMBO Journal, 1999, 18(9):2352-2363.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蒋冬阳,陈夕军,石童,陈宸,左示敏. 水稻纹枯病菌多聚半乳糖醛酸酶基因RsPG5的克隆与功能分析[J]. 微生物学通报, 2023, 50(8): 3440-3453

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-24
  • 录用日期:2023-01-05
  • 在线发布日期: 2023-08-08
  • 出版日期: 2023-08-20
文章二维码