科微学术

微生物学通报

玉米赤霉烯酮脱毒菌PA26-7的分离鉴定及其应用效果评价
作者:
  • 邓凤如

    邓凤如

    华南农业大学生命科学学院 广东省农业生物蛋白质功能与调控重点实验室, 广东 广州 510642;华南农业大学岭南现代农业科学与技术广东省实验室, 广东 广州 510642;华南农业大学农业农村部人畜共患病重点实验室, 广东 广州 510642
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 陈嘉杭

    陈嘉杭

    华南农业大学生命科学学院 广东省农业生物蛋白质功能与调控重点实验室, 广东 广州 510642;华南农业大学岭南现代农业科学与技术广东省实验室, 广东 广州 510642;华南农业大学农业农村部人畜共患病重点实验室, 广东 广州 510642
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 贾淑卉

    贾淑卉

    华南农业大学生命科学学院 广东省农业生物蛋白质功能与调控重点实验室, 广东 广州 510642;华南农业大学岭南现代农业科学与技术广东省实验室, 广东 广州 510642;华南农业大学农业农村部人畜共患病重点实验室, 广东 广州 510642
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 姚楚莹

    姚楚莹

    华南农业大学生命科学学院 广东省农业生物蛋白质功能与调控重点实验室, 广东 广州 510642;华南农业大学岭南现代农业科学与技术广东省实验室, 广东 广州 510642;华南农业大学农业农村部人畜共患病重点实验室, 广东 广州 510642
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李容洁

    李容洁

    华南农业大学生命科学学院 广东省农业生物蛋白质功能与调控重点实验室, 广东 广州 510642;华南农业大学岭南现代农业科学与技术广东省实验室, 广东 广州 510642;华南农业大学农业农村部人畜共患病重点实验室, 广东 广州 510642
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 邓诣群

    邓诣群

    华南农业大学生命科学学院 广东省农业生物蛋白质功能与调控重点实验室, 广东 广州 510642;华南农业大学岭南现代农业科学与技术广东省实验室, 广东 广州 510642;华南农业大学农业农村部人畜共患病重点实验室, 广东 广州 510642
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 文继开

    文继开

    华南农业大学生命科学学院 广东省农业生物蛋白质功能与调控重点实验室, 广东 广州 510642;华南农业大学岭南现代农业科学与技术广东省实验室, 广东 广州 510642;华南农业大学农业农村部人畜共患病重点实验室, 广东 广州 510642
    在期刊界中查找
    在百度中查找
    在本站中查找
基金项目:

广东省自然科学基金(2022A1515012291);广东省教育厅重大基础研究项目(2018KZDXM015)


Screening and performance evaluation of a zearalenone-degrading bacterial isolate PA26-7
Author:
  • DENG Fengru

    DENG Fengru

    Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China;Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China;Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Jiahang

    CHEN Jiahang

    Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China;Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China;Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JIA Shuhui

    JIA Shuhui

    Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China;Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China;Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YAO Chuying

    YAO Chuying

    Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China;Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China;Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Rongjie

    LI Rongjie

    Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China;Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China;Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • DENG Yiqun

    DENG Yiqun

    Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China;Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China;Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WEN Jikai

    WEN Jikai

    Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China;Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China;Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】玉米赤霉烯酮(zearalenone, ZEN)是广泛污染粮谷类作物的一种雌激素类真菌毒素,不仅给农业经济带来巨大损失,还能通过食物链对人和动物健康造成危害。【目的】从微生态制剂中筛选获得能够高效降解玉米赤霉烯酮的菌株,优化其脱毒条件,测定其在饲料中的实际脱毒效果及对饲料中植酸、维生素含量变化的影响。【方法】从微生态制剂中分离出玉米赤霉烯酮降解菌,通过细胞计数试剂盒-8 (cell counting kit-8, CCK-8)测定菌株降解玉米赤霉烯酮产物的细胞毒性和雌激素活性,通过高效液相色谱法测定分离株在培养基和饲料中的解毒效果,以及分离株在霉变的豆粕、麸皮和成品饲料中固态发酵前后维生素的含量变化,通过三氯化铁比色法测定饲料脱毒前后植酸的含量变化。【结果】从微生态制剂中筛选出一株通过分泌胞外酶高效降解玉米赤霉烯酮的贝莱斯芽孢杆菌(Bacillus velezensis) PA26-7,该菌株在培养基起始pH 4.0-8.0、培养温度25-60 ℃条件下均可降解玉米赤霉烯酮,产物的细胞毒性和雌激素活性均较ZEN弱。PA26-7经固态发酵72 h后,饲料原料(豆粕和麸皮)及霉变的成品鸡饲料中玉米赤霉烯酮含量下降66.2%-96.8%,植酸含量下降8.40%-32.26%,维生素B2、维生素C和叶酸的含量显著提高。【结论】B. velezensis PA26-7可作为饲料中玉米赤霉烯酮的生物脱毒菌株,其固态发酵有效清除了饲料中的植酸,并产生了多种维生素,有利于改善饲料的营养结构。

    Abstract:

    [Background] Zearalenone (ZEN) is non-steroidal estrogenic mycotoxin contaminating a variety of grain crops. ZEN can cause serious health problems in livestock and humans through the food chain, leading to great economic losses in the food industry and livestock farming. [Objective] To optimize the conditions for ZEN degradation and evaluate the degradation performance of a ZEN-degrading bacterial strain isolated from microecological preparations, and then study the influence of the strain on the content of phytic acid and vitamins in feed. [Methods] A ZEN-degrading bacterial strain was isolated from microecological preparations. The cytotoxicity and estrogenic activity of ZEN-degrading products were determined by Cell Counting Kit-8 (CCK-8). The phytic acid content in feed before and after detoxification was determined by ferric chloride colorimetry. HPLC was employed to determine the detoxification effect of the isolate in culture medium and feed and the vitamin content in feed before and after solid state fermentation. [Results] One bacterial isolate, Bacillus velezensis PA26-7, was obtained from microecological preparations, which efficiently degraded ZEN by secreting extracellular enzymes. PA26-7 degraded ZEN at the initial pH 4.0–8.0 and the incubation temperature of 25–60 ℃. The cytotoxicity and estrogenic activity of the degradation products were weaker than those of ZEN. The solid state fermentation with PA26-7 for 72 h decreased the content of ZEN by 66.2%–96.8%, decreased the content of phytic acid by 8.40%–32.26%, and increased the content of vitamin B2, vitamin C, and folic acid in the feed samples including soybean meal, bran, and moldy finished feed for chicken. [Conclusion] B. velezensis PA26-7 can be used as a biodetoxification strain for ZEN in feed. The solid-state fermentation with B. velezensis PA26-7 can effectively remove phytic acid in the feed and produce a variety of vitamins, which is conducive to improving the nutritional structure of feed.

    参考文献
    [1] YAZAR S, OMURTAG GZ. Fumonisins, trichothecenes and Zearalenone in cereals[J]. International Journal of Molecular Sciences, 2008, 9(11):2062-2090.
    [2] LIU JD, APPLEGATE T. Zearalenone (ZEN) in livestock and poultry:dose, toxicokinetics, toxicity and estrogenicity[J]. Toxins, 2020, 12(6):377.
    [3] WANG GF, LIAN C, XI YF, SUN ZM, ZHENG SL. Evaluation of nonionic surfactant modified montmorillonite as mycotoxins adsorbent for aflatoxin B1 and Zearalenone[J]. Journal of Colloid and Interface Science, 2018, 518:48-56.
    [4] LOI M, FANELLI F, LIUZZI VC, LOGRIECO AF, MULÈ G. Mycotoxin biotransformation by native and commercial enzymes:present and future perspectives[J]. Toxins, 2017, 9(4):111.
    [5] WANG N, LI P, PAN JW, WANG MY, LONG M, ZANG J, YANG SH. Bacillus velezensis A2 fermentation exerts a protective effect on renal injury induced by Zearalenone in mice[J]. Scientific Reports, 2018, 8:13646.
    [6] WANG N, WU WW, PAN JW, LONG M. Detoxification strategies for Zearalenone using microorganisms:a review[J]. Microorganisms, 2019, 7(7):208.
    [7] YANG SB, ZHENG HC, XU JY, ZHAO XY, SHU WJ, LI XM, SONG H, MA YH. New biotransformation mode of Zearalenone identified in Bacillus subtilis Y816 revealing a novel ZEN conjugate[J]. Journal of Agricultural and Food Chemistry, 2021, 69(26):7409-7419.
    [8] JI J, YU J, YANG Y, YUAN X, YANG J, ZHANG YZ, SUN JD, SUN XL. Exploration on the enhancement of detoxification ability of Zearalenone and its degradation products of Aspergillus niger FS10 under directional stress of Zearalenone[J]. Toxins, 2021, 13(10):720.
    [9] ZHANG ZX, XU W, WU H, ZHANG WL, MU WM. Identification of a potent enzyme for the detoxification of Zearalenone[J]. Journal of Agricultural and Food Chemistry, 2020, 68(1):376-383.
    [10] WU KT, REN CX, GONG YF, GAO X, ALI RAJPUT S, QI DS, WANG S. The insensitive mechanism of poultry to Zearalenone:a review[J]. Animal Nutrition, 2021, 7(3):587-594.
    [11] MINERVINI F, GIANNOCCARO A, CAVALLINI A, VISCONTI A. Investigations on cellular proliferation induced by Zearalenone and its derivatives in relation to the estrogenic parameters[J]. Toxicology Letters, 2005, 159(3):272-283.
    [12] TATAY E, ESPÍN S, GARCÍA-FERNÁNDEZ AJ, RUIZ MJ. Estrogenic activity of Zearalenone, α-Zearalenol and β-Zearalenol assessed using the E-screen assay in MCF-7 cells[J]. Toxicology Mechanisms and Methods, 2018, 28(4):239-242.
    [13] 张德锋, 高艳侠, 王亚军, 刘春, 石存斌. 贝莱斯芽孢杆菌的分类、拮抗功能及其应用研究进展[J]. 微生物学通报, 2020, 47(11):3634-3649.ZHANG DF, GAO YX, WANG YJ, LIU C, SHI CB. Advances in taxonomy, antagonistic function and application of Bacillus velezensis[J]. Microbiology China, 2020, 47(11):3634-3649(in Chinese).
    [14] CANIBE N, JENSEN BB. Fermented liquid feed-Microbial and nutritional aspects and impact on enteric diseases in pigs[J]. Animal Feed Science and Technology, 2012, 173(1/2):17-40.
    [15] 吴逸飞, 孙宏, 李园成, 王新, 柳永, 姚晓红, 汤江武. 微生物固态发酵对饲料营养特性的影响[J]. 浙江农业学报, 2016, 28(12):2014-2020.WU YF, SUN H, LI YC, WANG X, LIU Y, YAO XH, TANG JW. Effects of microbial solid-state fermentation on nutritional value of feeds[J]. Acta Agriculturae Zhejiangensis, 2016, 28(12):2014-2020(in Chinese).
    [16] 林标声, 罗建, 李益明, 杨小燕. 微生物发酵饲料生产关键因素的优化及发酵过程成分变化分析[J]. 中国农学通报, 2015, 31(32):1-6.LIN BS, LUO J, LI YM, YANG XY. Optimization of key factors influencing microbial fermented feed production and analysis of composition variation during fermentation process[J]. Chinese Agricultural Science Bulletin, 2015, 31(32):1-6(in Chinese).
    [17] 陈娟, 刘军, 张云鹏, 王娟娟. 微生物降解菜籽粕中抗营养因子的研究[J]. 粮食与饲料工业, 2010(7):40-42.CHEN J, LIU J, ZHANG YP, WANG JJ. Microbial degradation of anti-nutrition factors contained in rapeseed meal[J]. Cereal & Feed Industry, 2010(7):40-42(in Chinese).
    [18] ALKANDARI S, BHATTI ME, ALDUGHPASSI A, AL-HASSAWI F, AL-FOUDARI M, SIDHU JS. Development of functional foods using psyllium husk and wheat bran fractions:Phytic acid contents[J]. Saudi Journal of Biological Sciences, 2021, 28(6):3602-3606.
    [19] ZHAO T, YONG XH, ZHAO ZM, DOLCE V, LI Y, CURCIO R. Research status of Bacillus phytase[J]. 3 Biotech, 2021, 11(9):415.
    [20] SPARVOLI F, COMINELLI E. Seed biofortification and phytic acid reduction:a conflict of interest for the plant?[J]. Plants (Basel, Switzerland), 2015, 4(4):728-755.
    [21] TAHIR M, SHIM MY, WARD NE, SMITH C, FOSTER E, GUNEY AC, PESTI GM. Phytate and other nutrient components of feed ingredients for poultry[J]. Poultry Science, 2012, 91(4):928-935.
    [22] RAPP C, LANTZSCH HJ, DROCHNER W. Hydrolysis of phytic acid by intrinsic plant and supplemented microbial phytase (Aspergillus niger) in the stomach and small intestine of minipigs fitted with re-entrant cannulas. 2. Phytase activity[J]. Journal of Animal Physiology and Animal Nutrition, 2001, 85(11/12):414-419.
    [23] 张晓琳, 汪洋, 李爱科. 饲料中真菌毒素生物脱毒的研究进展[J]. 动物营养学报, 2014, 26(10):2971-2978.ZHANG XL, WANG Y, LI AK. Progress on biological detoxification of mycotoxins in feeds[J]. Chinese Journal of Animal Nutrition, 2014, 26(10):2971-2978(in Chinese).
    [24] VEKIRU E, HAMETNER C, MITTERBAUER R, RECHTHALER J, ADAM G, SCHATZMAYR G, KRSKA R, SCHUHMACHER R. Cleavage of Zearalenone by Trichosporon mycotoxinivorans to a novel nonestrogenic metabolite[J]. Applied and Environmental Microbiology, 2010, 76(7):2353-2359.
    [25] CHEN SW, WANG HT, SHIH WY, CIOU YN, CHANG YY, ANANDA L, WANG SY, HSU JT. Application of Zearalenone (ZEN)-detoxifying Bacillus in animal feed decontamination through fermentation[J]. Toxins, 2019, 11(6):330.
    [26] MOKOENA MP, CHELULE PK, GQALENI N. Reduction of fumonisin B1 and Zearalenone by lactic acid bacteria in fermented maize meal[J]. Journal of Food Protection, 2005, 68(10):2095-2099.
    [27] ZHANG JN, ZHENG YD, TAO H, LIU J, ZHAO P, YANG F, LV ZH, WANG JQ. Effects of Bacillus subtilis ZJ-2019-1 on Zearalenone toxicosis in female gilts[J]. Toxins, 2021, 13(11):788.
    [28] GRUBER-DORNINGER C, FAAS J, DOUPOVEC B, ALESCHKO M, STOIBER C, HÖBARTNER-GUßL A, SCHÖNDORFER K, KILLINGER M, ZEBELI Q, SCHATZMAYR D. Metabolism of Zearalenone in the rumen of dairy cows with and without application of a Zearalenone-degrading enzyme[J]. Toxins, 2021, 13(2):84.
    [29] DENG FR, CHEN YS, SUN TY, WU YT, SU YT, LIU CY, ZHOU JY, DENG YQ, WEN JK. Antimicrobial resistance, virulence characteristics and genotypes of Bacillus spp. from probiotic products of diverse origins[J]. Food Research International, 2021, 139:109949.
    [30] SKRZYDLEWSKI P, TWARUŻEK M, GRAJEWSKI J. Cytotoxicity of mycotoxins and their combinations on different cell lines:a review[J]. Toxins, 2022, 14(4):244.
    [31] 温舒元, 范杰英, 魏春雁, 蔡玉红, 马虹. 分光光度法测定大豆中植酸含量的不确定度评估[J]. 东北农业科学, 2019, 44(3):92-96.WEN SY, FAN JY, WEI CY, CAI YH, MA H. Evaluation of uncertainty of the determination of phytic acid content in soybean by spectrophotometry[J]. Journal of Northeast Agricultural Sciences, 2019, 44(3):92-96(in Chinese).
    [32] ZHAO L, ZHANG L, XU ZJ, LIU XD, CHEN LY, DAI JF, KARROW NA, SUN LH. Occurrence of aflatoxin B1, deoxynivalenol and Zearalenone in feeds in China during 2018-2020[J]. Journal of Animal Science and Biotechnology, 2021, 12(1):74.
    [33] 王楠. 贝莱斯芽孢杆菌A2对玉米赤霉烯酮降解机制及其安全性评估[D]. 沈阳:沈阳农业大学硕士学位论文, 2019.WANG N. Degradation Mechanism and Safety Evaluation of zearalenone detoxification by Bacillus velezensis A2[D]. Shenyang:Master's Thesis of Shenyang Agricultural University, 2019(in Chinese).
    [34] KELLER L, ABRUNHOSA L, KELLER K, ROSA C, CAVAGLIERI L, VENÂNCIO A. Zearalenone and its derivatives α-Zearalenol and β-Zearalenol decontamination by Saccharomyces cerevisiae strains isolated from bovine forage[J]. Toxins, 2015, 7(8):3297-3308.
    [35] GRUBER-DORNINGER C, JENKINS T, SCHATZMAYR G. Global mycotoxin occurrence in feed:a ten-year survey[J]. Toxins, 2019, 11(7):375.
    [36] YANG C, SONG G, LIM W. Effects of mycotoxin- contaminated feed on farm animals[J]. Journal of Hazardous Materials, 2020, 389:122087.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邓凤如,陈嘉杭,贾淑卉,姚楚莹,李容洁,邓诣群,文继开. 玉米赤霉烯酮脱毒菌PA26-7的分离鉴定及其应用效果评价[J]. 微生物学通报, 2023, 50(8): 3404-3416

复制
分享
文章指标
  • 点击次数:238
  • 下载次数: 907
  • HTML阅读次数: 726
  • 引用次数: 0
历史
  • 收稿日期:2022-10-31
  • 录用日期:2023-01-05
  • 在线发布日期: 2023-08-08
  • 出版日期: 2023-08-20
文章二维码