科微学术

微生物学通报

挖掘与调控乙酸胁迫响应基因提高重组酿酒酵母合成番茄红素水平
作者:
基金项目:

国家自然科学基金(31972058);国家重点研发计划(2022YFD2101401)


Mining and regulating acetic acid stress-responsive genes to improve lycopene synthesis in recombinant Saccharomyces cerevisiae
Author:
  • LI Jiarong

    LI Jiarong

    Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIN Jingyuan

    LIN Jingyuan

    Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Zhengyu

    LI Zhengyu

    Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • DUAN Changqing

    DUAN Changqing

    Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YAN Guoliang

    YAN Guoliang

    Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [71]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】乙酰辅酶A是酿酒酵母异源合成番茄红素的重要中间产物,胞质中乙酰辅酶A主要来自乙酰辅酶A合成酶催化乙酸合成。【目的】通过外源添加乙酸盐结合调控乙酸胁迫应答基因增加胞内乙酰辅酶A含量,改善细胞生长,促进番茄红素合成。【方法】在合成番茄红素的重组酵母菌中过表达乙酰辅酶A合成酶编码基因(acs2),在发酵过程中添加10 g/L乙酸盐,结合转录组学分析挖掘乙酸胁迫响应基因,进行单一和组合调控。【结果】添加乙酸盐后,重组菌Y02中番茄红素含量增加了19.14%,但细胞生长受到抑制,转录组学结果表明adk2fap7hem13elo3pdc5set5pmt5hst4clb2swe1表达水平增加,因此构建了单基因和双基因过表达菌株,其中Y02-set5-hst4菌在添加乙酸盐后细胞生长得到了显著改善,同时胞内乙酰辅酶A浓度提高了78.21%,番茄红素含量和产量达到12.62 mg/g-DCW和108.67 mg/L,与对照菌Y02相比分别提高了42.76%和67.13%。同时该菌中甲羟戊酸途径中关键基因erg12erg20hmg1的表达量与对照菌相比分别上调了1.70、1.44和1.96倍。【结论】在过表达acs2的基础上,过表达set5hst4能够增加酵母对乙酸胁迫的耐受能力,并提高乙酰辅酶A合成水平和甲羟戊酸途径代谢通量,促进番茄红素的合成,研究结果可为其他类异戊二烯产物的代谢工程研究提供有益的借鉴。

    Abstract:

    [Background] Acetyl-CoA is an important intermediate for lycopene synthesis in Saccharomyces cerevisiae, and acetyl-CoA in cytosol is mainly derived from acetic acid catalyzed by acetyl-CoA synthase.[Objective] To improve cell growth and lycopene production by increasing the content of intracellular acetyl-CoA through adding acetate combined with regulation of acetic acid stress-responsive gene. [Methods] Lycopene recombinant yeast strains overexpressing acetyl-CoA synthase (acs2) were added with 10 g/L acetate during the fermentation process. The transcriptomic analysis was combined to excavate acetic acid stress-responsive genes for single and combined regulation. [Results] After adding acetate, the lycopene content of the recombinant Y02 strain increased by 19.14%, but cell growth was suppressed. The results of the transcriptional analysis indicated that the expression levels of adk2, fap7, hem13, elo3, pdc5, set5, pmt5, hst4, clb2, and swe1 were increased significantly. Therefore, a single-gene and dual-gene were overexpressed in the Y02 strain. It was found that the growth of Y02-set5-hst4 was significantly improved in the presence of acetate. At the same time, the intracellular acetyl-CoA concentration was increased by 78.21%, and the lycopene content and yield reached 12.62 mg/g-DCW and 108.67 mg/L, respectively, which were increased by 42.76% and 67.13%, respectively, as compared with the control strain Y02. In addition, the expression levels of key genes erg12, erg20, and hmg1 in the mevalonate pathway were increased by 1.70, 1.44, and 1.96 folds, respectively, as compared with the control strain. [Conclusion] On the basis of overexpression of acs2, the overexpression of set5 and hst4 can improve the tolerance of yeast to acetic acid stress and increase the synthesis level of acetyl-CoA and the metabolic flux of mevalonate pathway, thus promoting the synthesis of lycopene. The results of this study provide valuable references for the metabolic engineering of other isoprenoid products.

    参考文献
    [1] VICKERS CE, WILLIAMS TC, PENG BY, CHERRY J. Recent advances in synthetic biology for engineering isoprenoid production in yeast[J]. Current Opinion in Chemical Biology, 2017, 40:47-56.
    [2] AGHAJANPOUR M, NAZER MR, OBEIDAVI Z, AKBARI M, EZATI P, KOR NM. Functional foods and their role in cancer prevention and health promotion:a comprehensive review[J]. American Journal of Cancer Research, 2017, 7(4):740-769.
    [3] KIRTI K, AMITA S, PRITI S, KUMAR AM, JYOTI S. Colorful world of microbes:carotenoids and their applications[J]. Advances in Biology, 2014, 23:1-13.
    [4] SAINI RK, KEUM YS. Carotenoid extraction methods:a review of recent developments[J]. Food Chemistry, 2018, 240:90-103.
    [5] 施明雨, 刘怡, 王冬, 路福平, 黄璐琦, 戴住波, 张学礼. 构建酿酒酵母细胞工厂生产番茄红素[J]. 中国中药杂志, 2014, 39(20):3978-3985. SHI MY, LIU Y, WANG D, LU FP, HUANG LQ, DAI ZB, ZHANG XL. Construction of Saccharomyces cerevisiae cell factories for lycopene production[J]. China Journal of Chinese Materia Medica, 2014, 39(20):3978-3985 (in Chinese).
    [6] KIRBY J, KEASLING JD. Metabolic engineering of microorganisms for isoprenoid production[J]. Natural Product Reports, 2008, 25(4):656-661.
    [7] 王贝贝, 施明雨, 王冬, 许骄阳, 刘怡, 杨洪江, 戴住波, 张学礼. 代谢工程改造酿酒酵母生产β-胡萝卜素[J]. 生物工程学报, 2014, 30(8):1204-1216. WANG BB, SHI MY, WANG D, XU JY, LIU Y, YANG HJ, DAI ZB, ZHANG XL. Production of β-carotene by metabolically engineered Saccharomyces cerevisiae[J]. Chinese Journal of Biotechnology, 2014, 30(8):1204-1216 (in Chinese).
    [8] SUN YX, SUN L, SHANG F, YAN GL. Enhanced production of beta-carotene in recombinant Saccharomyces cerevisiae by inverse metabolic engineering with supplementation of unsaturated fatty acids[J]. Process Biochemistry, 2016, 51(5):568-577.
    [9] SHI B, MA T, YE ZL, LI XW, HUANG YL, ZHOU ZY, DING YK, DENG ZX, LIU TG. Systematic metabolic engineering of Saccharomyces cerevisiae for lycopene overproduction[J]. Journal of Agricultural and Food Chemistry, 2019, 67(40):11148-11157.
    [10] CHENG L, SWOFFORD CA, SINSKEY AJ. Modular engineering for microbial production of carotenoids[J]. Metabolic Engineering Communications, 2020, 10:e00118.
    [11] LI X, WANG ZX, ZHANG GL, LI JY. Improving lycopene production in Saccharomyces cerevisiae through optimizing pathway and chassis metabolism[J]. Chemical Engineering Science, 2019, 193:364-369.
    [12] MARKHAM KA, ALPER HS. Synthetic biology expands the industrial potential of Yarrowia lipolytica[J]. Trends in Biotechnology, 2018, 36(10):1085-1095.
    [13] CARDENAS J, DA SILVA NA. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis[J]. Metabolic Engineering, 2016, 36:80-89.
    [14] PRONK JT, STEENSMA HY, van DIJKEN JP. Pyruvate metabolism in Saccharomyces cerevisiae[J]. Yeast (Chichester, England), 1996, 12(16):1607-1633.
    [15] MEADOWS AL, HAWKINS KM, TSEGAYE Y, ANTIPOV E, KIM Y, RAETZ L, DAHL RH, TAI AN, MAHATDEJKUR-MEADOWS T, XU L, ZHAO LS, DASIKA MS, MURARKA A, LENIHAN J, ENG DA, LENG JS, LIU CL, WENGRE JW, JIANG HX, CHAO L, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production[J]. Nature, 2016, 537(7622):694-697.
    [16] SU B, LAI P, YANG F, LI AZ, DENG MR, ZHU HH. Engineering a balanced acetyl coenzyme A metabolism in Saccharomyces cerevisiae for lycopene production through rational and evolutionary engineering[J]. Journal of Agricultural and Food Chemistry, 2022, 70(13):4019-4029.
    [17] LIU WS, ZHANG B, JIANG R. Improving acetyl-CoA biosynthesis in Saccharomyces cerevisiae via the overexpression of pantothenate kinase and PDH bypass[J]. Biotechnology for Biofuels, 2017, 10(1):1-9.
    [18] LIU H, FAN J, WANG C, LI C, ZHOU XH. Enhanced β-amyrin synthesis in Saccharomyces cerevisiae by coupling an optimal acetyl-CoA supply pathway[J]. Journal of Agricultural and Food Chemistry, 2019, 67(13):3723-3732.
    [19] LIU YQ, BAI CX, LIU Q, XU Q, QIAN ZL, PENG QQ, YU JH, XU MQ, ZHOU XS, ZHANG YX, CAI MH. Engineered ethanol-driven biosynthetic system for improving production of acetyl-CoA derived drugs in Crabtree-negative yeast[J]. Metabolic Engineering, 2019, 54:275-284.
    [20] SHIBA Y, PARADISE EM, KIRBY J, RO DK, KEASING JD. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids[J]. Metabolic Engineering, 2007, 9:160-168.
    [21] BU X, LIN JY, CHENG J, YANG D, DUAN CQ, KOFFAS M, YAN GL. Engineering endogenous ABC transporter with improving ATP supply and membrane flexibility enhances the secretion of β-carotene in Saccharomyces cerevisiae[J]. Biotechnology for Biofuels, 2020, 13 (168):1-14.
    [22] PENA PV, GLASKER S, SRIENC F. Genome-wide overexpression screen for sodium acetate resistance in Saccharomyces cerevisiae[J]. Journal of Biotechnology, 2013, 164(1):26-33.
    [23] MIRA NP, PALMA M, GUERREIRO JF, SA-CORREIA I. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid[J]. Microbial Cell Factories, 2010, 9(1):79.
    [24] 吕小妹. 利用代谢工程改造大肠杆菌及酿酒酵母进行异戊二烯生物合成的基础研究[D]. 杭州:浙江大学博士学位论文, 2015. LÜ XM. Metabolic Engineering of Escherichia coli and Saccharomyces cerevisiae for the production of Isoprene[D]. Hangzhou:Doctoral Dissertation of Zhejiang University, 2015 (in Chinese).
    [25] 谢文平. 代谢工程改造酿酒酵母生物合成类胡萝卜素的研究[D]. 杭州:浙江大学博士学位论文, 2015. XIE WP. Metabolic engineering of Saccharomyces cerevisiae for the production of carotenoids[D]. Hangzhou:Doctoral Dissertation of Zhejiang University, 2015 (in Chinese).
    [26] GIETZ RD, SCHIESTL RH. Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method[J]. Nature Protocols, 2007, 2(1):35-37.
    [27] XIE WP, LIU M, LÜ XM, LIU WQ, YU HW. Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 2014, 111(1):125-133.
    [28] TESTE MA, DUQUENNE M, FRANCOIS JM, PARROU JL. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae[J]. BMC Molecular Biology, 2009, 10:99.
    [29] CHEN HL, YANG Y, WANG Z, DOU J, WANG H, ZHOU CL. Elevated intracellular acetyl-CoA availability by acs2 overexpression and mls1 deletion combined with metK1 introduction enhanced SAM accumulation in Saccharomyces cerevisiae[J]. Biochemical Engineering Journal, 2016:26-34.
    [30] 尤迪, 叶邦策. 从翻译后修饰角度解析人工合成途径与底盘细胞的适配性[J]. 合成生物学, 2020(2):212-225. YOU D, YE BC. Compatibility between synthetic pathway and chassis cells from the viewpoint of post-translational modifications[J]. Synthetic Biology Journal, 2020(2):212-225 (in Chinese).
    [31] VERWAAL R, JIANG Y, WANG J, DARAN JM, SANDMANN G, van den BERG JA,van OOYEN AJJ. Heterologous carotenoid production in Saccharomyces cerevisiae induces the pleiotropic drug resistance stress response[J]. Yeast (Chichester, England), 2010, 27(12):983-998.
    [32] GENG P, ZHANG L, SHI GY. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae[J]. World Journal of Microbiology & Biotechnology, 2017, 33(5):94.
    [33] XIAO Y, HU Y, ZHANG L, XUE W. Identification of acetic-acid tolerance of Saccharomyces cerevisiae strains by microsatellite markers[J]. 2015, 14(2):54-62.
    [34] OH EJ, WEI N, KWAK S, KIM H, JIN YS. Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae[J]. Journal of Biotechnology, 2019, 292:1-4.
    [35] GU YJ, GORDON DM, AMUTHA B, PAIN D. A GTP:amp phosphotransferase, Adk2p, in Saccharomyces cerevisiae. Role of the C terminus in protein folding/stabilization, thermal tolerance, and enzymatic activity[J]. The Journal of Biological Chemistry, 2005, 280(19):18604-18609.
    [36] JUHNKE H, CHARIZANIS C, LATIFI F, KREMS B, ENTIAN KD. The essential protein fap7 is involved in the oxidative stress response of Saccharomyces cerevisiae[J]. Molecular Microbiology, 2000, 35(4):936-948.
    [37] TAKAHASHI T, YANO T, ZHU JX, HWANG GW, NAGANUMA A. Overexpression of FAP7, MIG3, TMA19, or YLR392c confers resistance to arsenite on Saccharomyces cerevisiae[J]. The Journal of Toxicological Sciences, 2010, 35(6):945-946.
    [38] ZHANG L, HACH A. Molecular mechanism of heme signaling in yeast:the transcriptional activator Hap1 serves as the key mediator[J]. Cellular and Molecular Life Sciences:CMLS, 1999, 56(5/6):415-426.
    [39] 崔红晶, 周涛, 赵炜, 宋浩昌, 袁源, 郑慧玲, 刘新光. 酵母PMT1与PMT5双基因缺失对细胞复制性寿命的影响[J]. 微生物学杂志, 2018, 38(5):34-38. CUI HJ, ZHOU T, ZHAO W, SONG HC, YUAN Y, ZHEN HL, LIU XG. Effect of PMT1 and PMT5 double-gene deficiency on yeast cells replication lifespan[J]. Journal of Microbiology, 2018, 38(5):34-38 (in Chinese).
    [40] HIROSHI M, SHIGERU M. The combination of NAD+-dependent deacetylase gene deletion and the interruption of gluconeogenesis causes increased glucose metabolism in budding yeast[J]. PLoS One, 2018, 13(3):e0194942.
    [41] MEI YC, FENG JP, HE F, LI YM, LIU YF, LI F, CHEN Y, DU HN. Set2-mediated H3K36 methylation states redundantly repress the production of antisense transcripts:role in transcription regulation[J]. FEBS Open Bio, 2021, 11(8):2225-2235.
    [42] ZHANG MM, ZHAO XQ, CHENG C, BAI FW. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1[J]. Biotechnology Journal, 2015, 10(12):1903-1911.
    [43] EISENKOLB M, ZENZMAIER C, LEITNER E, SCHNEITER R. A specific structural requirement for ergosterol in long-chain fatty acid synthesis mutants important for maintaining raft domains in yeast[J]. Molecular Microbiology, 2002, 13(12):4414-4428.
    [44] WANG DP, WANG L, HOU L, DENG XH, GAO Q, GAO NF. Metabolic engineering of Saccharomyces cerevisiae for accumulating pyruvic acid[J]. Annals of Microbiology, 2015, 65(4):2323-2331.
    [45] ZHANG W, KANG J, WANG CL, WEN XP, GE JP. Effects of pyruvate decarboxylase (pdc 1, pdc 5) gene knockout on the production of metabolites in two haploid Saccharomyces cerevisiae strains[J]. Preparative Biochemistry & Biotechnology, 2022, 52(1):62-69.
    [46] ELUERE R, OFFNER N, VARLET I, MOTTEUX O, SIGNON L, PICARD A, BAILLY E, SIMON MN. Compartmentalization of the functions and regulation of the mitotic cyclin Clb2 in S. cerevisiae[J]. Journal of Cell Science, 2007, 120(4):702-711.
    [47] HU F, APARICIO OM. Swe1 regulation and transcriptional control restrict the activity of mitotic cyclins toward replication proteins in Saccharomyces cerevisiae[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(25):8910-8915.
    [48] LI MJ, XIA QQ, ZHANG HB, ZHANG RB, YANG JM. Metabolic engineering of different microbial hosts for lycopene production[J]. Journal of Agricultural and Food Chemistry, 2020, 68(48):14104-14122.
    [49] HONG J, PARK SH, KIM S, KIM SW, HAHN JS. Efficient production production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production[J]. Applied Microbiology and Biotechnology, 2019, 103(1):211-223.
    [50] MA T, SHI B, YE ZL, LI XW, LIU M, CHEN Y, XIA J, NIELSEN J, DENG ZX, LIU TG. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene[J]. Metabolic Engineering, 2019, 52:134-142.
    [51] BENJAPHOKEE S, HASEGAWA D, YOKOTA D, ASVARAK T, AUESUKAREE C, SUGIYAMA M, KANEKO Y, BOONCHIRD C, HARASHIMA S. Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol[J]. New Biotechnology, 2012, 29(3):379-386.
    [52] YE W, ZHANG WM, LIU TM, TAN GH, LI HH, HUANG ZL. Improvement of ethanol production in Saccharomyces cerevisiae by high-efficient disruption of the ADH2 gene using a novel recombinant TALEN vector[J]. Frontiers in Microbiology, 2016, 7:1067.
    [53] LEE J, CHA S, KANG C, LEE GM, LIM HG, JUNG GY. Efficient conversion of acetate to 3-hydroxypropionic acid by engineered Escherichia coli[J]. Catalysts, 2018, 8(11):525.
    [54] GONG ZW, SHEN HW, ZHOU WT, WANG YD, YANG XB, ZHAO ZK. Efficient conversion of acetate into lipids by the oleaginous yeast Cryptococcus curvatus[J]. Biotechnology for Biofuels, 2015, 8:189.
    [55] 赵姝一, 袁冰, 王雪晴, 陈洪奇, 赵心清, 白凤武. 过表达tRNA基因tL(CAA)K提高酿酒酵母乙酸耐受性[J]. 生物工程学报, 2021, 37(12):4293-4302. ZHAO SY, YUAN B, WANG XQ, CHEN HQ, ZHAO XQ, BAI FW. Overexpression of a leucine transfer RNA gene tL(CAA)K improves the acetic acid tolerance of Saccharomyces cerevisiae[J]. Chinese Journal of Biotechnology, 2021, 37(12):4293-4302 (in Chinese).
    [56] SWINNEN S, HENRIQUES SF, SHRESTHA R, HO PW, SA-CORREIA I, NEVOIGT E. Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering:towards the underlying mechanisms[J]. Microbial Cell Factories, 2017, 16(1):7.
    [57] CUNHA JT, COSTA CE, FERRAZ L, ROMANI A, JOHANSSON B, SA-CORREIA I, DOMINGUES L. HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption:unravelling the underlying mechanisms[J]. Applied Microbiology and Biotechnology, 2018, 102(10):4589-4600.
    [58] YANG J, NIE Q. Engineering Escherichia coli to convert acetic acid to β-caryophyllene[J]. Microbial Cell Factories, 2016, 15(1):1-9.
    [59] GREEN EM, MAS G, YOUNG NL, GARCIA BA, GOZANI O. Methylation of H4 lysines 5, 8 and 12 by yeast Set5 calibrates chromatin stress responses[J]. Nature Structural & Molecular Biology, 2012, 19(3):361-363.
    [60] 张克俞, 张明明, 赵心清, 白凤武. 关键基因过表达提高酿酒酵母抑制剂耐受性及乙醇发酵性能[J]. 应用与环境生物学报, 2018, 24(3):541-546. ZHANG KY, ZHANG MM, ZHAO XQ, BAI FW. Improvement of inhibitor stress tolerance and ethanol fermentation of Saccharomyces cerevisiae by overexpression of novel key genes[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(3):541-546 (in Chinese).
    [61] 张明明. 乙酸胁迫耐性基因挖掘及高活性酿酒酵母构建[D]. 大连:大连理工大学博士学位论文, 2017. ZHANG MM. Mining of novel functional genes involved in acetic acid stress tolerance of Saccharomyces cerevisiae and construction of yeast strains with improved performance[D]. Dalian:Doctoral Dissertation of Dalian University of Technology, 2017 (in Chinese).
    [62] LAMOUR J, WAN C, ZHANG MM, ZHAO XQ, DEN HAAN R. Overexpression of endogenous stress-tolerance related genes in Saccharomyces cerevisiae improved strain robustness and production of heterologous cellobiohydrolase[J]. FEMS Yeast Research, 2019, 19(4):foz035.
    [63] CHAUHAN N, SERE YY, SOKOL AM, GRAUMANN J, MENON AK. A PhotoClick cholesterol-based quantitative proteomics screen for cytoplasmic sterol-binding proteins in Saccharomyces cerevisiae[J]. Yeast (Chichester, England), 2020, 37(1):15-25.
    [64] GERSHON L, KUPIEC M. A novel role for Dun1 in the regulation of origin firing upon hyper-acetylation of H3K56[J]. PLoS Genetics, 2021, 17(2):e1009391.
    [65] BRACHMANN CB, SHERMAN JM, DEVINE SE. CAMERON EE, PILLUS L, BOEKE JD. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability[J]. Genes & Development, 1995, 9(23):2888-2902.
    [66] MASUMOTO H, HAWKE D, KOBAYASHI R, VERREAULT A. A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response[J]. Nature, 2005, 436(7048):294-298.
    [67] MAAS NL, MILLER KM, DeFAZIO LG, TOCZYSKI DP. Cell cycle and checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4[J]. Molecular Cell, 2006, 23(1):109-119.
    [68] FREEMAN-COOK LL, SHERMAN JM, BRACHMANN CB, ALLSHIRE RC, BOEKE JD, PILLUS L. The Schizosaccharomyces pombe hst4(+) gene is a SIR2 homologue with silencing and centromeric functions[J]. Molecular Biology of the Cell, 1999, 10(10):3171-3186.
    [69] MADSEN CT, SYLVESTERSEN KB, YOUNG C, LARSEN SC, POULSEN JW, ANDERSEN MA, PAKMQVIST EA, HEY-MOGENSEN M, JENSEN PB, TREEBAK JT, LISBY M, NIELSEN ML. Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p[J]. Nature Communications, 2015, 6:7726.
    [70] CELIC I, VERREAULT A, BOEKE JD. Histone H3 K56 hyperacetylation perturbs replisomes and causes DNA damage[J]. Genetics, 2008, 179(4):1769-1784.
    [71] STARAI VJ, TAKAHASHI H, BOEKE JD, ESCALANTE-SEMERENA JC. Short-chain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae[J]. Genetics, 2003, 163(2):545-555.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李佳蓉,林静远,李正宇,段长青,燕国梁. 挖掘与调控乙酸胁迫响应基因提高重组酿酒酵母合成番茄红素水平[J]. 微生物学通报, 2023, 50(7): 2781-2797

复制
分享
文章指标
  • 点击次数:409
  • 下载次数: 871
  • HTML阅读次数: 716
  • 引用次数: 0
历史
  • 收稿日期:2022-10-09
  • 录用日期:2022-12-08
  • 在线发布日期: 2023-07-10
  • 出版日期: 2023-07-20
文章二维码