科微学术

微生物学通报

吡唑啉酮铜配合物P-FAH-Cu-phen对金黄色葡萄球菌的转录组影响分析
作者:
基金项目:

新疆维吾尔自治区自然科学基金(2021D01A119);新疆特殊环境物种保护与调控生物学实验室招标课题项目(XJDX1414-2018-02);新疆维吾尔自治区“百名青年博士引进计划”天池博士(BS2019003);新疆特殊环境物种多样性应用与调控重点实验室项目(XJTSWZ-2021-02)


Pyrazolone-copper complex P-FAH-Cu-phen affects transcriptome of Staphylococcus aureus
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [1]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】金黄色葡萄球菌是目前食品和临床引起感染的重要病原菌,迫切需要开发新型抗菌药物。【目的】分析吡唑啉酮铜配合物P-FAH-Cu-phen对金黄色葡萄球菌的转录组影响和主要代谢信号通路。【方法】采用液体稀释法测定P-FAH-Cu-phen作用金黄色葡萄球菌的最低抑菌浓度(minimum inhibitory concentration, MIC)和最低杀菌浓度(minimum bactericidal concentration, MBC)。将终浓度2 μg/mL的配合物分别作用于对数生长期的金黄色葡萄球菌30 min和2 h,进行转录组测序及分析。【结果】 P-FAH-Cu-phen作用金黄色葡萄球菌的MIC和MBC分别为2 μg/mL和4 μg/mL。与空白对照相比,配合物处理细菌30 min后,其差异基因共有356个,其中上调表达180个、下调表达176个;配合物处理细菌2 h后,其差异基因共有23个,其中上调表达3个、下调表达20个。差异基因功能主要富集于膜的组成部分、细胞质、质膜、ATP结合、发病机制、金属离子结合、组氨酸生物合成过程、DNA结合、水解酶活性、跨膜转运蛋白活性、硝酸盐同化、硝酸盐代谢过程、硝酸还原酶复合物、硝酸还原酶活性等。差异基因涉及的信号通路主要有双组分系统、群体感应、氮代谢、三羧酸循环、氨基酸代谢等。【结论】影响细菌质膜组成、毒素生成、生物膜形成、细胞壁合成、能量代谢等可能是吡唑啉酮铜配合物P-FAH-Cu-phen对金黄色葡萄球菌的主要抑菌作用。研究为揭示吡唑啉酮铜配合物抑制金黄色葡萄球菌分子机制提供了理论依据。

    Abstract:

    [Background] Staphylococcus aureus is a major bacterial pathogen causing infections in food and human body, and there is an urgent need to develop new antibacterial agents. [Objective] To study the effects of the pyrazolone-copper complex P-FAH-Cu-phen on the transcriptome and main metabolic signaling pathways of S. aureus. [Methods] The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of P-FAH-Cu-phen on S. aureus were determined by liquid dilution method. The S. aureus in the logarithmic growth phase was treated with P-FAH-Cu-phen at the final concentration of 2 μg/mL for 30 min and 2 h, respectively, and then the transcriptome was sequenced and analyzed. [Results] The MIC and MBC of P-FAH-Cu-phen on S. aureus were 2 μg/mL and 4 μg/mL, respectively. Compared with the blank control, P-FAH-Cu-phen treatment for 30 min led to 356 differentially expressed genes (DEGs), including 180 up-regulated genes and 176 down-regulated genes. P-FAH-Cu-phen treatment for 2 h resulted in 23 DEGs, including 3 up-regulated genes and 20 down-regulated genes. The DEGs were mainly enriched in membrane components, cytoplasm, plasma membrane, ATP binding, pathogenesis, metal ion binding, histidine biosynthesis process, DNA binding, hydrolytic enzyme activity, transmembrane transporter activity, nitrate assimilation, nitrate metabolism process, nitrate reductase complex, nitrate reductase activity, etc. The signaling pathways involving the DEGs mainly included two-component system, quorum sensing, nitrogen metabolism, tricarboxylic acid cycle, amino acid metabolism and so on. [Conclusion] P-FAH-Cu-phen may inhibit S. aureus by affecting plasma membrane composition, toxin production, biofilm formation, cell wall synthesis, and energy metabolism. The study provides a theoretical basis for revealing the molecular mechanism of the inhibition on S. aureus by P-FAH-Cu-phen.

    参考文献
    [1] TONG SYC, DAVIS JS, EICHENBERGER E, HOLLAND TL, FOWLER Jr VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management[J]. Clinical Microbiology Reviews, 2015, 28(3): 603-661.
    [2] CZAPLEWSKI L, BAX R, CLOKIE M, DAWSON M, FAIRHEAD H, FISCHETTI VA, FOSTER S, GILMORE BF, HANCOCK REW, HARPER D, HENDERSON IR, HILPERT K, JONES BV, KADIOGLU A, KNOWLES D, ÓLAFSDÓTTIR S, PAYNE D, PROJAN S, SHAUNAK S, SILVERMAN J, et al. Alternatives to antibiotics-a pipeline portfolio review[J]. The Lancet Infectious Diseases, 2016, 16(2): 239-251.
    [3] 蓝素桂, 李治蓉, 苏爱秋, 彭燕鸿, 廖燕科, 刘雪梅, 谭强. 金黄色葡萄球菌抗生素耐药研究进展[J]. 食品与发酵工业, 2021, 47(13): 310-317. LAN SG, LI ZR, SU AQ, PENG YH, LIAO YK, LIU XM, TAN Q. Review on the antibiotic resistance in Staphylococcus aureus[J]. Food and Fermentation Industries, 2021, 47(13): 310-317(in Chinese).
    [4] GABRIELYAN L, TRCHOUNIAN A. Antibacterial activities of transient metals nanoparticles and membranous mechanisms of action[J]. World Journal of Microbiology & Biotechnology, 2019, 35(10): 162.
    [5] BELETE TM. Novel targets to develop new antibacterial agents and novel alternatives to antibacterial agents[J]. Human Microbiome Journal, 2019, 11: 100052.
    [6] FREI A, ZUEGG J, ELLIOTT AG, BAKER M, BRAESE S, BROWN C, CHEN F, DOWSON CG, DUJARDIN G, JUNG N, KING AP, MANSOUR AM, MASSI M, MOAT J, MOHAMED HA, RENFREW AK, RUTLEDGE PJ, SADLER PJ, TODD MH, WILLANS CE, et al. Metal complexes as a promising source for new antibiotics[J]. Chemical Science, 2020, 11(10): 2627-2639.
    [7] 张思琪, 王路, 王振宇. 吡唑啉酮衍生物及其金属配合物抗肿瘤研究进展[J]. 化学研究与应用, 2014, 26(6): 777-784. ZHANG SQ, WANG L, WANG ZY. Antitumor activities of pyrazolone derivatives and their metal complexes[J]. Chemical Research and Application, 2014, 26(6): 777-784(in Chinese).
    [8] YOUSIF E, MAJEED A, AL-SAMMARRAE K, SALIH N, SALIMON J, ABDULLAH B. Metal complexes of Schiff bases: preparation, characterization, and biological activity[J]. Arabian Journal of Chemistry, 2017, 10: S1639-S1644.
    [9] FARRELL N. Biomedical uses and applications of inorganic chemistry. An overview[J]. Coordination Chemistry Reviews, 2002, 232(1): 1-4.
    [10] LIU JJ, ZHAO MY, ZHANG X, ZHAO X, ZHU HL. Pyrazole derivatives as antitumor, anti-inflammatory and antibacterial agents[J]. Mini Reviews in Medicinal Chemistry, 2013, 13(13): 1957-1966.
    [11] KHAIRNAR SD, SHINDE SG, SHRIVASTAVA VS. A short review on the improvement of antimicrobial activity by metal and nonmetal doping in nanoscale antimicrobial materials[J]. Journal of Nanomedicine & Biotherapeutic Discovery, 2019, 9: 163.
    [12] DOMÍNGUEZ Á, MUÑOZ E, LÓPEZ MC, CORDERO M, MARTÍNEZ JP, VIÑAS M. Transcriptomics as a tool to discover new antibacterial targets[J]. Biotechnology Letters, 2017, 39(6): 819-828.
    [13] MARCHETTI F, PETTINARI C, NICOLA CD, TOMBESI A, PETTINARI R. Coordination chemistry of pyrazolone-based ligands and applications of their metal complexes[J]. Coordination Chemistry Reviews, 2019, 401: 213069.
    [14] NURMAMAT M, YAN HL, WANG R, ZHAO HX, LI YH, WANG XJ, NURMAIMAITI K, KURMANJIANG T, LUO DF, BAODI J, XU GC, LI JY. Novel copper(II) complex with a 4-acylpyrazolone derivative and coligand induce apoptosis in liver cancer cells[J]. ACS Medicinal Chemistry Letters, 2021, 12(3): 467-476.
    [15] YANG B, KONG J, FANG X. Programmable CRISPR-Cas9 microneedle patch for long-term capture and real-time monitoring of universal cell-free DNA[J]. Nature Communications, 2022, 13(1): 1-16.
    [16] LAUB MT, GOULIAN M. Specificity in two-component signal transduction pathways[J]. Annual Review of Genetics, 2007, 41: 121-145.
    [17] BUTRICO CE, CASSAT JE. Quorum sensing and toxin production in Staphylococcus aureus osteomyelitis: pathogenesis and paradox[J]. Toxins, 2020, 12(8): 516.
    [18] 李琴, 燕永亮, 苏磊, 战嵛华, 张云华, 王荣富. 一般氮代谢调控蛋白NtrC的研究进展[J]. 中国农业科技导报, 2013, 15(3): 113-122. LI Q, YAN YL, SU L, ZHAN YH, ZHANG YH, WANG RF. Progress on general nitrogen regulation protein NtrC[J]. Journal of Agricultural Science and Technology, 2013, 15(3): 113-122(in Chinese).
    [19] DELEPELAIRE P. Bacterial ABC transporters of iron containing compounds[J]. Research in Microbiology, 2019, 170(8): 345-357.
    [20] CHEUNG GYC, BAE JS, OTTO M. Pathogenicity and virulence of Staphylococcus aureus[J]. Virulence, 2021, 12(1): 547-569.
    [21] PETTINARI C, TĂBĂCARU A, GALLI S. Coordination polymers and metal-organic frameworks based on poly (pyrazole)-containing ligands[J]. Coordination Chemistry Reviews, 2016, 307: 1-31.
    [22] JOSEPH VA, PANDYA JH, JADEJA RN. Syntheses, crystal structure and biological evaluation of Schiff bases and copper complexes derived from 4-formylpyrazolone[J]. Journal of Molecular Structure, 2015, 1081: 443-448.
    [23] AZAM M, WABAIDUR SM, ALAM M, TRZESOWSKA-KRUSZYNSKA A, KRUSZYNSKI R, AL-RESAYES SI, ALQAHTANI FF, KHAN MR, RAJENDRA. Design, structural investigations and antimicrobial activity of pyrazole nucleating copper and zinc complexes[J]. Polyhedron, 2021, 195: 114991.
    [24] NANDANWAR SK, KIM HJ. Anticancer and antibacterial activity of transition metal complexes[J]. ChemistrySelect, 2019, 4(5): 1706-1721.
    [25] KUMAR A, RAHAL A, SOHAL JS, GUPTA VK. Bacterial stress response: understanding the molecular mechanics to identify possible therapeutic targets[J]. Expert Review of Anti-Infective Therapy, 2021, 19(2): 121-127.
    [26] HUA X, YANG Q, ZHANG WJ, DONG ZM, YU SY, SCHWARZ S, LIU SG. Antibacterial activity and mechanism of action of aspidinol against multi-drug-resistant methicillin-resistant Staphylococcus aureus[J]. Frontiers in Pharmacology, 2018, 9: 619.
    [27] BLEUL L, FRANCOIS P, WOLZ C. Two-component systems of S. aureus: signaling and sensing mechanisms[J]. Genes, 2021, 13(1): 34.
    [28] HAAG AF, BAGNOLI F. The role of two-component signal transduction systems in Staphylococcus aureus virulence regulation[J]. Current Topics in Microbiology and Immunology, 2017, 409: 145-198.
    [29] BORISOV VB, SILETSKY SA, PAIARDINI A, HOOGEWIJS D, FORTE E, GIUFFRÈ A, POOLE RK. Bacterial oxidases of the cytochrome bd family: redox enzymes of unique structure, function, and utility as drug targets[J]. Antioxidants & Redox Signaling, 2021, 34(16): 1280-1318.
    [30] UNDEN G, KLEIN R. Sensing of O2and nitrate by bacteria: alternative strategies for transcriptional regulation of nitrate respiration by O2and nitrate[J]. Environmental Microbiology, 2021, 23(1): 5-14.
    [31] TAKAHASHI-ÍÑIGUEZ T, ABURTO-RODRÍGUEZ N, VILCHIS-GONZÁLEZ AL, FLORES ME. Function, kinetic properties, crystallization, and regulation of microbial malate dehydrogenase[J]. Journal of Zhejiang University-SCIENCE B, 2016, 17(4): 247-261.
    [32] FUCHS S, PANÉ-FARRÉ J, KOHLER C, HECKER M, ENGELMANN S. Anaerobic gene expression in Staphylococcus aureus[J]. Journal of Bacteriology, 2007, 189(11): 4275-4289.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李欣奕,塔玛莎·库尔曼江,王小静,胡开桂,王昊,张颖,曹文芝,李金玉. 吡唑啉酮铜配合物P-FAH-Cu-phen对金黄色葡萄球菌的转录组影响分析[J]. 微生物学通报, 2023, 50(6): 2648-2665

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-20
  • 录用日期:2022-11-23
  • 在线发布日期: 2023-06-05
  • 出版日期: 2023-06-25
文章二维码