科微学术

微生物学通报

西黑冠长臂猿粪便微生物宏基因组来源的高比活α-l-阿拉伯呋喃糖苷酶的重组表达及酶学性质
作者:
基金项目:

国家自然科学基金(31860299)


Recombinant expression and characterization of high-specific activity α-l-arabinofuranosidase from Nomascus concolor fecal microbial metagenome
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [57]
  • | | | |
  • 文章评论
    摘要:

    【背景】α-l-阿拉伯呋喃糖苷酶是一类重要的半纤维素酶,能协同其他半纤维素酶降解木聚糖,在食品、医药、生物质能转化中具有应用价值。【目的】挖掘新型α-l-阿拉伯呋喃糖苷酶基因,对其进行异源表达、纯化并研究其酶学性质。【方法】从西黑冠长臂猿粪便微生物宏基因组中扩增α-l-阿拉伯呋喃糖苷酶基因,在大肠杆菌BL21(DE3)中进行异源表达,并进行酶学性质研究。【结果】从粪便微生物宏基因组中扩增得到α-l-阿拉伯呋喃糖苷酶基因AbfNC2b_38,并获得重组α-l-阿拉伯呋喃糖苷酶AbfNC2b_38,其分子量为57.04 kDa。AbfNC2b_38的最适作用条件为55 ℃、pH 6.0,KmVmax分别为(6.48±0.73) mmol/L和(1 248.0±114.6) U/mg,与其他宏基因组来源的α-l-阿拉伯呋喃糖苷酶相比具有最高比活300.81 U/mg。AbfNC2b_38具有较好的乙醇和NaCl耐受性,30%乙醇下耐受1 h保持68%的活性;25% NaCl中耐受1 h,相对酶活仍保持在约70%。与木聚糖酶协同降解山毛榉木聚糖时,协同率最高为1.21。【结论】从西黑冠长臂猿粪便微生物宏基因组中获得新型α-l-阿拉伯呋喃糖苷酶基因AbfNC2b_38并成功异源表达。AbfNC2b_38具有较好的乙醇和NaCl耐受性,能与木聚糖酶协同作用提高木聚糖的降解效率,在饲料、食品加工等领域具有潜在的应用价值。

    Abstract:

    [Background] As a valuable hemicellulase, α-l-arabinofuranosidase (EC 3.2.1.55) can degrade xylan with other hemicellulases and is applied in food, medicine, and biomass energy conversion. [Objective] This study aimed to clone a novel α-l-arabinofuranosidase gene and analyze the heteroexpression, purification, and enzymatic properties of the protein. [Methods] The α-l-arabinofuranosidase gene was amplified from the fecal microbial metagenome of Nomascus concolor and heterologously expressed in Escherichia coli BL21(DE3), and then the enzymatic properties of the protein were examined. [Results] After α-l-arabinofuranosidase gene AbfNC2b_38 was amplified from the fecal microbial metagenome, a recombinant protein AbfNC2b_38 with a molecular weight of 57.04 kDa was expressed. At the optimum conditions of 55 °C and pH 6.0, the enzyme showed the Km of (6.48±0.73) mmol/L, the Vmax of (1 248.0±114.6) U/mg, and the highest specific activity of 300.81 U/mg compared with the α-l-arabinofuranosidases of other metagenomic sources. This enzyme was highly tolerant to ethanol and NaCl. It showed the relative activity of 68% after being treated with 30% ethanol for 1 h and relative activity of approximately 70% after being exposed to 25% NaCl for 1 h. Moreover, it had the highest synergistic rate of 1.21 when synergistically degrading beech xylan with xylanase. [Conclusion] A novel α-l-arabinofuranosidase gene AbfNC2b_38 was cloned from the fecal microbial metagenome of N. concolor, which was successfully heterologously expressed. AbfNC2b_38 was highly tolerant to both ethanol and NaCl, and can cooperate with xylanase to improve the degradation efficiency of xylan. Hence, this enzyme is of significant application potential in feed and food processing.

    参考文献
    [1] SHEN BZ, SUN XG, ZUO X, SHILLING T, APGAR J, ROSS M, BOUGRI O, SAMOYLOV V, PARKER M, HANCOCK E, LUCERO H, GRAY B, EKBORG NA, ZHANG DC, JOHNSON JCS, LAZAR G, RAAB RM. Engineering a thermoregulated intein-modified xylanase into maize for consolidated lignocellulosic biomass processing[J]. Nature Biotechnology, 2012, 30(11): 1131-1136.
    [2] SEGATO F, DAMÁSIO ARL, de LUCAS RC, SQUINA FM, PRADE RA. Genomics review of holocellulose deconstruction by aspergilli[J]. Microbiology and Molecular Biology Reviews: MMBR, 2014, 78(4): 588-613.
    [3] YANG XZ, SHI PJ, MA R, LUO HY, HUANG HQ, YANG PL, YAO B. A new GH43α-arabinofuranosidase from Humicola insolens Y1: biochemical characterization and synergistic action with a xylanase on xylan degradation[J]. Applied Biochemistry and Biotechnology, 2015, 175(4): 1960-1970.
    [4] LÓPEZ-MONDÉJAR R, ALGORA C, BALDRIAN P. Lignocellulolytic systems of soil bacteria: a vast and diverse toolbox for biotechnological conversion processes[J]. Biotechnology Advances, 2019, 37(6): 107374.
    [5] SAHA BC. Alpha-l-arabinofuranosidases: biochemistry, molecular biology and application in biotechnology[J]. Biotechnology Advances, 2000, 18(5): 403-423.
    [6] PORIA V, SAINI JK, SINGH S, NAIN L, KUHAD RC. Arabinofuranosidases: characteristics, microbial production, and potential in waste valorization and industrial applications[J]. Bioresource Technology, 2020, 304: 123019.
    [7] JORDAN DB, BOWMAN MJ, BRAKER JD, DIEN BS, HECTOR RE, LEE CC, MERTENS JA, WAGSCHAL K. Plant cell walls to ethanol[J]. The Biochemical Journal, 2012, 442(2): 241-252.
    [8] TU T, LI XL, MENG K, BAI YG, WANG Y, WANG ZX, YAO B, LUO HY. A GH51α-l-arabinofuranosidase from Talaromyces leycettanus strain JCM12802 that selectively drives synergistic lignocellulose hydrolysis[J]. Microbial Cell Factories, 2019, 18(1): 138.
    [9] TAVERNINI L, OTTONE C, ILLANES A, WILSON L. Entrapment of enzyme aggregates in chitosan beads for aroma release in white wines[J]. International Journal of Biological Macromolecules, 2020, 154: 1082-1090.
    [10] COZANNET P, KIDD MT, MONTANHINI NETO R, GERAERT PA. Next-generation non-starch polysaccharide-degrading, multi-carbohydrase complex rich in xylanase and arabinofuranosidase to enhance broiler feed digestibility[J]. Poultry Science, 2017, 96(8): 2743-2750.
    [11] XUE YM, CUI XB, ZHANG ZH, ZHOU T, GAO R, LI YX, DING XX. Effect of β-endoxylanase and α-arabinofuranosidase enzymatic hydrolysis on nutritional and technological properties of wheat brans[J]. Food Chemistry, 2020, 302: 125332.
    [12] 彭程, 肖文熙, 倪辉, 李利君, 谭万森, 林燕玲, 李清彪. 一种黑曲霉α-l-阿拉伯呋喃糖苷酶克隆表达、性质分析和果汁澄清效果[J]. 食品科学, 2022, 43(2): 83-92. PENG C, XIAO WX, NI H, LI LJ, TAN WS, LIN YL, LI QB. Cloning, expression and characterization of α-l-arabinofuranosidase from Aspergillus niger and its clarification effect on fruit juice[J]. Food Science, 2022, 43(2): 83-92(in Chinese).
    [13] KURAKAKE M, TAKAO J, ASANO O, TANIMOTO H, KOMAKI T. Production of l-arabinose from corn hull arabinoxylan by Arthrobacter aurescens MK5α-l-arabinofuranosidase[J]. Journal of Food Science, 2011, 76(2): C231-C235.
    [14] LI XM, XIE XZ, LIU J, WU DH, CAI GL, LU J. Characterization of a putative glycoside hydrolase family 43 arabinofuranosidase from Aspergillus niger and its potential use in beer production[J]. Food Chemistry, 2020, 305: 125382.
    [15] BORIN GP, SANCHEZ CC, de SOUZA AP, de SANTANA ES, de SOUZA AT, PAES LEME AF, SQUINA FM, BUCKERIDGE M, GOLDMAN GH, OLIVEIRA JV. Comparative secretome analysis of Trichoderma reesei and Aspergillus niger during growth on sugarcane biomass[J]. PLoS One, 2015, 10(6): e0129275.
    [16] REIJNGOUD J, DESEKE M, HALBESMA ETM, ALAZI E, ARENTSHORST M, PUNT PJ, RAM AFJ. Mutations in AraR leading to constitutive of arabinolytic genes in Aspergillus niger under derepressing conditions[J]. Applied Microbiology and Biotechnology, 2019, 103(10): 4125-4136.
    [17] JI MH, LI SJ, CHEN A, LIU YH, XIE YK, DUAN HY, SHI JP, SUN JS. A wheat bran inducible expression system for the efficient production of α-l-arabinofuranosidase in Bacillus subtilis[J]. Enzyme and Microbial Technology, 2021, 144: 109726.
    [18] ZHANG R, TAN SQ, ZHANG BL, GUO ZY, TIAN LY, WENG P, LUO ZY. Two key amino acids variant of α-l-arabinofuranosidase from Bacillus subtilis Str. 168 with altered activity for selective conversion ginsenoside Rc to Rd[J]. Molecules, 2021, 26(6): 1733.
    [19] KOMENO M, HAYAMIZU H, FUJITA K, ASHIDA H. Two novel α-l-arabinofuranosidases from Bifidobacterium longum subsp. longum belonging to glycoside hydrolase family 43 cooperatively degrade arabinan[J]. Applied and Environmental Microbiology, 2019, 85(6): e02582-e02518.
    [20] SAITO K, VIBORG AH, SAKAMOTO S, ARAKAWA T, YAMADA C, FUJITA K, FUSHINOBU S. Crystal structure of β-l-arabinobiosidase belonging to glycoside hydrolase family 121[J]. PLoS One, 2020, 15(6): e0231513.
    [21] SASAKI Y, HORIGOME A, ODAMAKI T, XIAO JZ, ISHIWATA A, ITO Y, KITAHARA K, FUJITA K. Novel 3-O-α-d-galactosyl-α-l-arabinofuranosidase for the assimilation of gum arabic arabinogalactan protein in Bifidobacterium longum subsp. longum[J]. Applied and Environmental Microbiology, 2021, 87(10): e02690-e02620.
    [22] KOMENO M, YOSHIHARA Y, KAWASAKI J, NABESHIMA W, MAEDA K, SASAKI Y, FUJITA K, ASHIDA H. Two α-l-arabinofuranosidases from Bifidobacterium longum subsp. longum are involved in arabinoxylan utilization[J]. Applied Microbiology and Biotechnology, 2022, 106(5): 1957-1965.
    [23] SUN JY, XU F, LU J. A glycoside hydrolase family 62 A-l-arabinofuranosidase from Trichoderma reesei and its applicable potential during mashing[J]. Foods (Basel, Switzerland), 2020, 9(3): 356.
    [24] LEAL MOTTA ML, ALVES FERREIRA FILHO J, de MELO RR, ZANPHORLIN LM, dos SANTOS CA, de SOUZA AP. A novel fungal metal-dependent α-l-arabinofuranosidase of family 54 glycoside hydrolase shows expanded substrate specificity[J]. Scientific Reports, 2021, 11: 10961.
    [25] LAMBRÉ C, BAVIERA JMB, BOLOGNESI C, COCCONCELLI PS, CREBELLI R, GOTT DM, GROB K, LAMPI E, MENGELERS M, MORTENSEN A, RIVIÈRE G, STEFFENSEN IL, TLUSTOS C, van LOVEREN H, VERNIS L, ZORN H, ANDRYSZKIEWICZ M, LIU Y, NIELSEN E, NORBY K, CHESSON A. Safety evaluation of the food enzyme non-reducing end α-l-arabinofuranosidase from the genetically modified Trichoderma reesei strain NZYM-GV[J]. EFSA Journal European Food Safety Authority, 2022, 20(3): e07173.
    [26] YANG Y, ZHU N, YANG JS, LIN YJ, LIU JW, WANG RN, WANG FQ, YUAN HL. A novel bifunctional acetyl xylan esterase/arabinofuranosidase from Penicillium chrysogenum P33 enhances enzymatic hydrolysis of lignocellulose[J]. Microbial Cell Factories, 2017, 16(1): 166.
    [27] HU YB, YAN XC, ZHANG H, LIU JQ, LUO F, CUI YY, WANG WY, ZHOU YF. Cloning and expression of a novel α-1,3-arabinofuranosidase from Penicillium oxalicum sp. 68[J]. AMB Express, 2018, 8(1): 51.
    [28] GAO LW, LI SY, XU YN, XIA CQ, XU JD, LIU J, QIN YQ, SONG X, LIU GD, QU YB. Mutation of a conserved alanine residue in transcription factor AraR leads to hyperproduction of α-l-arabinofuranosidases in Penicillium oxalicum[J]. Biotechnology Journal, 2019, 14(7): e1800643.
    [29] CINTRA LC, Da COSTA IC, de OLIVEIRA ICM, FERNANDES AG, FARIA SP, SANTOS AMORIN JESUÍNO R, RAVANAL MC, EYZAGUIRRE J, RAMOS LP, de FARIA FP, ULHOA CJ. The boosting effect of recombinant hemicellulases on the enzymatic hydrolysis of steam-treated sugarcane bagasse[J]. Enzyme and Microbial Technology, 2020, 133: 109447.
    [30] LI XX, KOUZOUNIS D, KABEL MA, de VRIES RP. GH10 and GH11 endoxylanases in Penicillium subrubescens: comparative characterization and synergy with GH51, GH54, GH62α-l-arabinofuranosidases from the same fungus[J]. New Biotechnology, 2022, 70: 84-92.
    [31] PHUENGMAUNG P, KUNISHIGE Y, SUKHUMSIRICHART W, SAKAMOTO T. Identification and characterization of GH62 bacterial α-l-arabinofuranosidase from thermotolerant Streptomyces sp. SWU10 that preferentially degrades branched l-arabinofuranoses in wheat arabinoxylan[J]. Enzyme and Microbial Technology, 2018, 112: 22-28.
    [32] ZHOU JG, BAO L, CHANG L, ZHOU YF, LU H. Biochemical and kinetic characterization of GH43β-d-xylosidase/α-l-arabinofuranosidase and GH30α-l-arabinofuranosidase/β-d-xylosidase from rumen metagenome[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(1): 143-152.
    [33] THORNBURY M, SICHERI J, SLAINE P, GETZ LJ, FINLAYSON-TRICK E, COOK J, GUINARD C, BOUDREAU N, JAKEMAN D, ROHDE J, McCORMICK C. Characterization of novel lignocellulose-degrading enzymes from the porcupine microbiome using synthetic metagenomics[J]. PLoS One, 2019, 14(1): e0209221.
    [34] FERRER M, GHAZI A, BELOQUI A, VIEITES JM, LÓPEZ-CORTÉS N, MARÍN-NAVARRO J, NECHITAYLO TY, GUAZZARONI ME, POLAINA J, WALICZEK A, CHERNIKOVA TN, REVA ON, GOLYSHINA OV, GOLYSHIN PN. Functional metagenomics unveils a multifunctional glycosyl hydrolase from the family 43 catalysing the breakdown of plant polymers in the calf rumen[J]. PLoS One, 2012, 7(6): e38134.
    [35] CALUSINSKA M, MARYNOWSKA M, BERTUCCI M, UNTEREINER B, KLIMEK D, GOUX X, SILLAM-DUSSÈS D, GAWRON P, HALDER R, WILMES P, FERRER P, GERIN P, ROISIN Y, DELFOSSE P. Integrative omics analysis of the termite gut system adaptation to Miscanthus diet identifies lignocellulose degradation enzymes[J]. Communications Biology, 2020, 3: 275.
    [36] FORTUNE B, MHLONGO S, ZYL LJ, HUDDY R, SMART M, TRINDADE M. Characterisation of three novel α-l-arabinofuranosidases from a compost metagenome[J]. BMC Biotechnology, 2019, 19(1): 1-13.
    [37] van DYK JS, PLETSCHKE BI. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy[J]. Biotechnology Advances, 2012, 30(6): 1458-1480.
    [38] PAËS G, SKOV LK, O'DONOHUE MJ, RÉMOND C, KASTRUP JS, GAJHEDE M, MIRZA O. The structure of the complex between a branched pentasaccharide and Thermobacillus xylanilyticus GH-51 arabinofuranosidase reveals xylan-binding determinants and induced fit[J]. Biochemistry, 2008, 47(28): 7441-7451.
    [39] YANG WX, BAI YG, YANG PL, LUO HY, HUANG HQ, MENG K, SHI PJ, WANG YR, YAO B. A novel bifunctional GH51 exo-α-l-arabinofuranosidase/endo- xylanase from Alicyclobacillus sp. A4 with significant biomass-degrading capacity[J]. Biotechnology for Biofuels, 2015, 8: 197.
    [40] CANAKCI S, KACAGAN M, INAN K, BELDUZ AO, SAHA BC. Cloning, purification, and characterization of a thermostable α-l-arabinofuranosidase from Anoxybacillus kestanbolensis AC26Sari[J]. Applied Microbiology and Biotechnology, 2008, 81(1): 61-68.
    [41] PEI JJ, SHAO WL. Purification and characterization of an extracellular α-l-arabinosidase from a novel isolate Bacillus pumilus ARA and its over-expression in Escherichia coli[J]. Applied Microbiology and Biotechnology, 2008, 78(1): 115-121.
    [42] CANAKCI S, BELDUZ AO, SAHA BC, YASAR A, AYAZ FA, YAYLI N. Purification and characterization of a highly thermostable α-l-Arabinofuranosidase from Geobacillus caldoxylolyticus TK4[J]. Applied Microbiology and Biotechnology, 2007, 75(4): 813-820.
    [43] AN DS, CUI CH, SUNG BH, YANG HC, KIM SC, LEE ST, IM WT, KIM SG. Characterization of a novel ginsenoside-hydrolyzing α-l-arabinofuranosidase, AbfA, from Rhodanobacter ginsenosidimutans Gsoil 3054T[J]. Applied Microbiology and Biotechnology, 2012, 94(3): 673-682.
    [44] SHI PJ, LI N, YANG PL, WANG YR, LUO HY, BAI YG, YAO B. Gene cloning, expression, and characterization of a family 51α-l-arabinofuranosidase from Streptomyces sp. S9[J]. Applied Biochemistry and Biotechnology, 2010, 162(3): 707-718.
    [45] MATSUZAWA T, KANEKO S, YAOI K. Screening, identification, and characterization of a GH43 family β-xylosidase/α-arabinofuranosidase from a compost microbial metagenome[J]. Applied Microbiology and Biotechnology, 2015, 99(21): 8943-8954.
    [46] GRUNINGER RJ, GONG X, FORSTER RJ, McALLISTER TA. Biochemical and kinetic characterization of the multifunctional β-glucosidase/ β-xylosidase/α-arabinosidase, Bgxa1[J]. Applied Microbiology and Biotechnology, 2014, 98(7): 3003-3012.
    [47] BASTIEN G, ARNAL G, BOZONNET S, LAGUERRE S, FERREIRA F, FAURÉ R, HENRISSAT B, LEFÈVRE F, ROBE P, BOUCHEZ O, NOIROT C, DUMON C, O'DONOHUE M. Mining for hemicellulases in the fungus-growing termite Pseudacanthotermes militaris using functional metagenomics[J]. Biotechnology for Biofuels, 2013, 6(1): 78.
    [48] SHIN HY, PARK SY, SUNG JH, KIM DH. Purification and characterization of alpha-l- arabinopyranosidase and alpha-l-arabinofuranosidase from Bifidobacterium breve K-110, a human intestinal anaerobic bacterium metabolizing ginsenoside Rb2 and Rc[J]. Applied and Environmental Microbiology, 2003, 69(12): 7116-7123.
    [49] SCHWARZ WH, BRONNENMEIER K, KRAUSE B, LOTTSPEICH F, STAUDENBAUER WL. Debranching of arabinoxylan: properties of the thermoactive recombinant α-l-arabinofuranosidase from Clostridium stercorarium (ArfB)[J]. Applied Microbiology and Biotechnology, 1995, 43(5): 856-860.
    [50] LEE JH, HYUN YJ, KIM DH. Cloning and characterization of α-l-arabinofuranosidase and bifunctional α-l-arabinopyranosidase/β-d- galactopyranosidase from Bifidobacterium longum H-1[J]. Journal of Applied Microbiology, 2011, 111(5): 1097-1107.
    [51] LIU QM, JUNG HM, CUI CH, SUNG BH, KIM JK, KIM SG, LEE ST, KIM SC, IM WT. Bioconversion of ginsenoside Rc into Rd by a novel α-l-arabinofuranosidase, Abf22-3 from Leuconostoc sp. 22-3: cloning, expression, and enzyme characterization[J]. Antonie Van Leeuwenhoek, 2013, 103(4): 747-754.
    [52] GILEAD S, SHOHAM Y. Purification and characterization of alpha-l-arabinofuranosidase from Bacillus stearothermophilus T-6[J]. Applied and Environmental Microbiology, 1995, 61(1): 170-174.
    [53] HASHIMOTO T, NAKATA Y. Synergistic degradation of arabinoxylan with alpha-l-arabinofuranosidase, xylanase and beta-xylosidase from soy sauce koji mold, Aspergillus oryzae, in high salt condition[J]. Journal of Bioscience and Bioengineering, 2003, 95(2): 164-169.
    [54] RAVANAL MC, ROSA L, EYZAGUIRRE J. Α-l-arabinofuranosidase 3 from Penicillium purpurogenum (ABF3): potential application in the enhancement of wine flavour and heterologous expression of the enzyme[J]. Food Chemistry, 2012, 134(2): 888-893.
    [55] 毛颖. 枯草芽孢杆菌(Bacillus subtilis) WB800N的α-l-阿拉伯呋喃糖苷酶在人参皂苷水解中的应用[D]. 昆明: 云南大学硕士学位论文, 2020. MAO Y. Application of α-l-arabinofuranidase from Bacillus subtilis WB800N in the hydrolysis of ginsenoside[D]. Kunming: Master’s Thesis of Yunnan University, 2020(in Chinese).
    [56] 左莎莎. α-l-阿拉伯呋喃糖苷酶和双功能β-木糖苷酶/α-l-阿拉伯吡喃糖苷酶基因的克隆与表征[D]. 昆明: 云南大学硕士学位论文, 2019. ZUO SS. Cloning and characterization of gene encoding α-l-arabinofuranosidase and bifunctional β-xylosidase/α-l-arabinopyranosidase[D]. Kunming: Master’s Thesis of Yunnan University, 2019(in Chinese).
    [57] MICHLMAYR H, SCHÜMANN C, KULBE KD, del HIERRO AM. Heterologously expressed family 51 alpha-l-arabinofuranosidases from Oenococcus oeni and Lactobacillus brevis[J]. Applied and Environmental Microbiology, 2011, 77(4): 1528-1531.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

夏娆,杨金茹,梁师思,陈红,黄遵锡,许波. 西黑冠长臂猿粪便微生物宏基因组来源的高比活α-l-阿拉伯呋喃糖苷酶的重组表达及酶学性质[J]. 微生物学通报, 2023, 50(6): 2582-2601

复制
分享
文章指标
  • 点击次数:293
  • 下载次数: 980
  • HTML阅读次数: 1168
  • 引用次数: 0
历史
  • 收稿日期:2022-12-01
  • 录用日期:2023-01-12
  • 在线发布日期: 2023-06-05
  • 出版日期: 2023-06-25
文章二维码