科微学术

微生物学通报

液固工艺山西陈醋发酵微生物群落组成、互作网络及溯源分析
作者:
基金项目:

山西省2019年度留学人员科技活动择优资助项目(201946);2021年度山西省科技战略研究专项(202104031402028);山西省重点研发计划(202102130501008)


The composition, interaction network, and source of microbial community in Shanxi mature vinegar produced by liquid-solid fermentation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [1]
  • | | |
  • 文章评论
    摘要:

    【背景】传统山西陈醋是在开放环境下由多菌种固态发酵酿制而成,解析酿造过程中微生物群落的组成、互作网络及来源对认识和调控食醋发酵过程都具有重要意义。【目的】揭示山西陈醋酿造微生物群落的组成、演替、互作网络及来源。【方法】基于高通量测序技术揭示山西陈醋酿造过程中微生物群落的组成、演替和多样性;采用SPSS数据统计软件计算物种间的斯皮尔曼相关系数并利用Gephi软件对微生物群落互作网络进行可视化分析;采用快速期望最大化微生物源跟踪(fast expectation-maximization microbial source tracking, FEAST)方法解析发酵微生物群落的来源。【结果】山西陈醋酿造过程中有6个优势细菌属和5个优势真菌属(平均相对丰度大于1%);醋酸杆菌属(Acetobacter)、乳酸杆菌属(Lactobacillus)和复膜孢酵母属(Saccharomycopsis)的平均相对丰度较高,分别为20.76%、30.38%和46.24%;醋酸杆菌属(Acetobacter)的相对丰度在醋酸发酵阶段逐渐增加,而乳酸杆菌属(Lactobacillus)在此阶段的趋势则相反。微生物群落互作网络结果显示魏斯氏菌属(Weissella)、乳球菌属(Lactococcus)、季也蒙酵母属(Meyerozyma)、LoigolactobacillusSchleiferilactobacillus和地杆菌属(Geobacter)具有较高的连接度(连接度≥7);此外,醋酸杆菌属(Acetobacter)与魏斯氏菌属(Weissella)、SchleiferilactobacillusLoigolactobacillus、乳球菌属(Lactococcus)、季也蒙酵母属(Meyerozyma)具有显著的拮抗作用。来源追溯结果显示糖化发酵第2天样品中有1.02%的细菌群落和77.04%的真菌群落来源于大曲;在醋酸发酵第1天样品中有0.93%的细菌群落和52.82%的真菌群落来源于火醅。【结论】为了解山西陈醋酿造过程中微生物群落的组成、演替、互作网络和解释酿造微生物来源提供了重要的理论数据。

    Abstract:

    [Background] Traditional Shanxi mature vinegar is produced by solid-state fermentation with multiple strains in an open environment. Revealing the composition, interaction network, and source of microbial community facilitates the understanding and regulation of the vinegar fermentation process. [Objective] To reveal the composition, succession, interaction network, and source of microbial community in Shanxi mature vinegar during the fermentation process. [Methods] High-throughput DNA sequencing was performed to reveal the composition, succession, and diversity of the microbial community. SPSS was employed to calculate the Spearman correlation coefficient between species and Gephi was used for the visual analysis of the microbial interaction network. Fast expectation-maximization microbial source tracking (FEAST) was employed to analyze the origin of the microorganisms. [Results] Six bacterial genera and five fungal genera (average relative abundance greater than 1%) were dominant in the fermentation process of Shanxi mature vinegar. The average relative abundance of Acetobacter, Lactobacillus, and Saccharomycopsis were 20.76%, 30.38%, and 46.24%, respectively. The relative abundance of Acetobacter increased gradually during acetic acid fermentation, while the opposite trend was observed for Lactobacillus. The microbial community interaction network showed that Weissella, Lactococcus, Meyerozyma, Loigolactobacillus, Schleiferilactobacillus, and Geobacter had high connectivity (≥7). In addition, Acetobacter demonstrated significant antagonism with Weissella, Schleiferilactobacillus, Loigolactobacillus, Lactococcus, and Meyerozyma. The results of source tracking showed that 1.02% of bacteria and 77.04% of fungi were derived from Daqu on the second day of saccharification. On the first day of acetic acid fermentation, 0.93% of bacteria and 52.82% of fungi were derived from fermented grains. [Conclusion] This study provided important theoretical data for understanding the composition, succession, and interaction network of microbial community and tracking the source of microorganisms during the fermentation process of Shanxi mature vinegar.

    参考文献
    [1] 寇蓉. 液固发酵山西陈醋酿造微生物溯源与季节演替研究[D]. 太原: 太原理工大学硕士学位论文, 2022. KOU R. Study on microbial source tracking and seasonal succession of Shanxi mature vinegar with liquid-solid fermentation craft. [D]. Taiyuan: Master's Thesis of Taiyuan University of Technology, 2022(in Chinese).
    [2] NIE ZQ, ZHENG Y, DU HF, XIE SK, WANG M. Dynamics and diversity of microbial community succession in traditional fermentation of Shanxi aged vinegar[J]. Food Microbiology, 2015, 47: 62-68.
    [3] ZHU YP, ZHANG FF, ZHANG CN, YANG L, FAN GS, XU YQ, SUN BG, LI XT. Dynamic microbial succession of Shanxi aged vinegar and its correlation with flavor metabolites during different stages of acetic acid fermentation[J]. Scientific Reports, 2018, 8(1): 8612.
    [4] WANG ZM, LU ZM, YU YJ, LI GQ, SHI JS, XU ZH. Batch-to-batch uniformity of bacterial community succession and flavor formation in the fermentation of Zhenjiang aromatic vinegar[J]. Food Microbiology, 2015, 50: 64-69.
    [5] JIAO S, LIU ZS, LIN YB, YANG J, CHEN WM, WEI GH. Bacterial communities in oil contaminated soils: biogeography and co-occurrence patterns[J]. Soil Biology and Biochemistry, 2016, 98: 64-73.
    [6] QIN JJ, LI YR, CAI ZM, LI SH, ZHU JF, ZHANG F, LIANG SS, ZHANG WW, GUAN YL, SHEN DQ, PENG YQ, ZHANG DY, JIE ZY, WU WX, QIN YW, XUE WB, LI JH, HAN LC, LU DH, WU PX, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2012, 490(7418): 55-60.
    [7] 关琼, 马占山. 人类母乳微生物菌群的生态学分析[J]. 科学通报, 2014, 59(22): 2205-2212. GUAN Q, MA ZS. Ecological analysis of human milk microbiome[J]. Chinese Science Bulletin, 2014, 59(22): 2205-2212(in Chinese).
    [8] SHEN CC, WANG J, JING ZW, QIAO NH, XIONG C, GE Y. Plant diversity enhances soil fungal network stability indirectly through the increase of soil carbon and fungal keystone taxa richness[J]. Science of The Total Environment, 2021, 818: 151737.
    [9] FANG GY, CHAI LJ, ZHONG XZ, JIANG YJ. Deciphering the succession patterns of bacterial community and their correlations with environmental factors and flavor compounds during the fermentation of Zhejiang rosy vinegar[J]. International Journal of Food Microbiology, 2021, 341: 109070.
    [10] 戴奕杰. 酱香型白酒酿造过程中微生物群落组成及其与酒品质的关系[D]. 长沙: 湖南农业大学博士学位论文, 2019. DAI YJ. The composition of microbial community and its relationship with liquor quality in the brewing process of Maotai-flavor liquor[D]. Changsha: Doctoral Dissertation of Hunan Agricultural University, 2019(in Chinese).
    [11] WANG XS, DU H, ZHANG Y, XU Y. Environmental microbiota drives microbial succession and metabolic profiles during Chinese liquor fermentation[J]. Applied and Environmental Microbiology, 2018, 84(4): e02369-e02317.
    [12] KNIGHTS D, KUCZYNSKI J, CHARLSON ES, ZANEVELD J, MOZER MC, COLLMAN RG, BUSHMAN FD, KNIGHT R, KELLEY ST. Bayesian community-wide culture-independent microbial source tracking[J]. Nature Methods, 2011, 8(9): 761-763.
    [13] SHENHAV L, THOMPSON M, JOSEPH TA, BRISCOE L, FURMAN O, BOGUMIL D, MIZRAHI I, ITSIK PE’ER I, HALPERIN E. FEAST: fast expectation-maximization for microbial source tracking[J]. Nature Methods, 2019, 16(7): 627-632.
    [14] ARSENEAU JR, STEEVES R, LAFLAMME M. Modified low-salt CTAB extraction of high-quality DNA from contaminant-rich tissues[J]. Molecular Ecology Resources, 2017, 17(4): 686-693.
    [15] 刘冲冲, 冯声宝, 吴群, 黄和强, 陈占秀, 李善文, 徐岩. 青稞酒发酵过程中的风味功能微生物及其风味代谢特征解析[J]. 微生物学通报, 2020, 47(1): 151-161. LIU CC, FENG SB, WU Q, HUANG HQ, CHEN ZX, LI SW, XU Y. Flavor-related microbiota and their flavor metabolism during highland barley Baijiu fermentation[J]. Microbiology China, 2020, 47(1): 151-161(in Chinese).
    [16] MARTIN M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. EMBnet Journal, 2011, 17(1): 10-12.
    [17] SCHLOSS PD, GEVERS D, WESTCOTT SL. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies[J]. PLoS One, 2011, 6(12): e27310.
    [18] EDGAR RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998.
    [19] YUN JM, ZHAO FQ, ZHANG WW, YAN HJ, ZHAO FY, AI DY. Monitoring the microbial community succession and diversity of Liangzhou fumigated vinegar during solid-state fermentation with next-generation sequencing[J]. Annals of Microbiology, 2019, 69(3): 279-289.
    [20] WANG ZM, LU ZM, SHI JS, XU ZH. Exploring flavour-producing core microbiota in multispecies solid-state fermentation of traditional Chinese vinegar[J]. Scientific Reports, 2016, 6: 26818.
    [21] ZHENG Y, ZHAO CM, LI XW, XIA ML, WANG XB, ZHANG Q, YAN YF, LANG FF, SONG J, WANG M. Kinetics of predominant microorganisms in the multi-microorganism solid-state fermentation of cereal vinegar[J]. LWT, 2022, 159: 113209.
    [22] ZHENG JS, WITTOUCK S, SALVETTI E, FRANZ CMAP, HARRIS HMB, MATTARELLI P, O’TOOLE PW, POT B, VANDAMME P, WALTER J, WATANABE K, WUYTS S, FELIS GE, GANZLE MG, LEBEER S. A taxonomic note on the genus Lactobacillus: description of 23 novel Genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(4): 2782-2858.
    [23] NIE ZQ, ZHENG Y, XIE SK, ZHANG XL, SONG J, XIA ML, WANG M. Unraveling the correlation between microbiota succession and metabolite changes in traditional Shanxi aged vinegar[J]. Scientific Reports, 2017, 7(1): 9240.
    [24] XU W, HUANG ZY, ZHANG XJ, LI Q, LU ZM, SHI JS, XU ZH, MA YH. Monitoring the microbial community during solid-state acetic acid fermentation of Zhenjiang aromatic vinegar[J]. Food Microbiology, 2011, 28(6): 1175-1181.
    [25] 王雪山. 不同环境清香类型白酒发酵微生物种群结构比较及溯源解析[D]. 无锡: 江南大学博士学位论文, 2018. WANG XS. Microbial community structure and microbial source tracking of Chinese light-flavor liquor fermentation in different environments[D]. Wuxi: Doctoral Dissertation of Jiangnan University, 2018(in Chinese).
    [26] 潘婉舒. 季节变化对保宁醋发酵过程中细菌菌群及风味物质的影响[D]. 雅安: 四川农业大学硕士学位论文, 2019. PAN WS. Effects of seasonal variation on bacterial flora and flavor substances in the fermentation of Baoning vinegar[D]. Ya’an: Master's Thesis of Sichuan Agricultural University, 2019(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

寇蓉,冯国杨,李晨,董弘毅,范晓军. 液固工艺山西陈醋发酵微生物群落组成、互作网络及溯源分析[J]. 微生物学通报, 2023, 50(6): 2556-2568

复制
分享
文章指标
  • 点击次数:262
  • 下载次数: 1067
  • HTML阅读次数: 919
  • 引用次数: 0
历史
  • 收稿日期:2022-09-20
  • 录用日期:2022-11-27
  • 在线发布日期: 2023-06-05
  • 出版日期: 2023-06-25
文章二维码