科微学术

微生物学通报

GH42家族保守氨基酸位点累积突变对Geobacillus stearothermophilus来源β-半乳糖苷酶BgaB催化活性的影响
作者:
基金项目:

国家自然科学基金(31301523, 31171636);安徽省教育厅重点研究项目(KJ2021A1071, KJ2020A0715);滁 州市科技计划(2021ZD017, 2021GJ011);高校优秀青年骨干人才项目(gxyq2022100);滁州学院科研项目(2020qd36, 2022XJZD23, 2022XJZD20)


Cumulative effect of mutations at conserved sites of GH42 family on the catalytic activity of β-galactosidase BgaB from Geobacillus stearothermophilus
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [15]
  • | | |
  • 文章评论
    摘要:

    【背景】β-半乳糖苷酶转糖苷活性弱,产物低聚半乳糖(galactooligosaccharides, GOS)易被水解,致其催化得率普遍较低。【目的】以GH42家族Geobacillus stearothermophilus来源β-半乳糖苷酶BgaB为对象,探讨家族保守氨基酸位点突变对β-半乳糖苷酶BgaB催化活性的影响。【方法】在单点突变体功能研究基础上,采用定点突变与化学修饰相结合的方法,对保守氨基酸位点E303与F341进行累积突变。【结果】与野生型酶相比,所构建双点突变体Ox-E303C/F341S水解活性降低为30%;GOS最大得率由0.75%提高到19.50%。【结论】家族保守氨基酸位点累积突变能够使单点突变体功能得到共同进化,降低β-半乳糖苷酶水解活性和底物抑制作用,能够提高其转糖苷催化活性。

    Abstract:

    [Background] The weak transglycosidase activity of β-galactosidase and the hydrolyzable property of the product galactooligosaccharides (GOS) results in the low product yield. [Objective] To study the effect of mutations at highly conserved sites of glycoside hydrolase family 42 (GH42) on the catalytic activity of the β-galactosidase BgaB from Geobacillus stearothermophilus.[Methods] On the basis of the functional analyses of single site mutations, the conserved sites E303 and F341 were cumulatively mutated by the combination of site-directed mutagenesis and chemical modification. [Results] The double-site mutant Ox-E303C/F341S was constructed. Compared with the wild-type enzyme, the double mutations reduced the hydrolysis activity to 30% and increased the GOS yield from 0.75% to 19.50%. [Conclusion] The cumulative mutations of conserved sites enable co-evolution of single-site mutant functions. Reducing the hydrolytic activity and substrate inhibition can improve the transglycosidase activity of β-galactosidases. This work provides a reference for the modification and regulation of the transglycosylating activity of GH42 β-galactosidases.

    参考文献
    [1] AMBROGI V, BOTTACINI F, SHARRY JM, van BREEN J, O'KEEFFE E, WALSH D, SCHOEMAKER B, CAO LQ, KUIPERS B, LINDNER C, JIMENO ML, DOYAGÜEZ EG, HERNANDEZ-HERNANDEZ O, MORENO FJ, SCHOTERMAN M, van SINDEREN D. Bifidobacterial β-galactosidase-mediated production of galacto-oligosaccharides: structural and preliminary functional assessments[J]. Frontiers in Microbiology, 2021, 12: 750635.
    [2] WANG G, WANG H, JIN Y, XIAO Z, UMAR YAQOOB M, LIN Y, CHEN H, WANG M. Galactooligosaccharides as a protective agent for intestinal barrier and its regulatory functions for intestinal microbiota[J]. Food Research International, 2022, 155: 111003.
    [3] MARÁZ A, KOVÁCS Z, BENJAMINS E, PÁZMÁNDI M. Recent developments in microbial production of high-purity galacto-oligosaccharides[J]. World Journal of Microbiology & Biotechnology, 2022, 38(6): 95.
    [4] HASSAN N, GEIGER B, GANDINI R, PATEL BKC, KITTL R, HALTRICH D, NGUYEN TH, DIVNE C, TAN TC. Engineering a thermostable Halothermothrix orenii beta-glucosidase for improved galacto-oligosaccharide synthesis[J]. Applied Microbiology and Biotechnology, 2016, 100(8): 3533-3543.
    [5] GONZALEZ CP, CAGNONI AJ, MARINO KV, FONTANA C, SAENZ-MÉNDEZ P, IRAZOQUI G, GIACOMINI C. Enzymatic synthesis of non-natural trisaccharides and galactosides; Insights of their interaction with galectins as a function of their structure[J]. Carbohydrate Research, 2019, 472: 1-15.
    [6] MOVAHEDPOUR A, AHMADI N, GHALAMFARSA F, GHESMATI Z, KHALIFEH M, MALEKSABET A, SHABANINEJAD Z, TAHERI-ANGANEH M, SAVARDASHTAKI A. β-Galactosidase: from its source and applications to its recombinant form[J]. Biotechnology and Applied Biochemistry, 2021: 1-17.
    [7] MANO MCR, NERI-NUMA IA, DA SILVA JB, PAULINO BN, PESSOA MG, PASTORE GM. Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry[J]. Applied Microbiology and Biotechnology, 2018, 102(1): 17-37.
    [8] YAN YR, GUAN WS, LI XY, GAO KE, XU XX, LIU B, ZHANG W, ZHANG YH. β-galactosidase GALA from Bacillus circulans with high transgalactosylation activity[J]. Bioengineered, 2021, 12(1): 8908-8919.
    [9] SILVERIO SC, MACEDO EA, TEIXEIRA JA, RODRIGUES LR. New beta-galactosidase producers with potential for prebiotic synthesis[J]. Bioresource Technology, 2018, 250: 131-139.
    [10] KITTIBUNCHAKUL S, MAISCHBERGER T, DOMIG KJ, KNEIFEL W, NGUYEN HM, HALTRICH D, NGUYEN TH. Fermentability of a novel galacto-oligosaccharide mixture by Lactobacillus spp. and Bifidobacterium spp.[J]. Molecules (Basel, Switzerland), 2018, 23(12): 3352.
    [11] LEE H, NOBREGA DE MOURA BELL JML, BARILE D. Discovery of novel high-molecular weight oligosaccharides containing N-acetylhexosamine in bovine colostrum whey permeate hydrolyzed with Aspergillus oryzae β-galactosidase[J]. Journal of Agricultural and Food Chemistry, 2019, 67(12): 3313-3322.
    [12] HANSSON T, KAPER T, VAN DER OOST J, DE VOS WM, Adlercreutz P. Improved oligosaccharide synthesis by protein engineering of beta-glucosidase CelB from hyperthermophilic Pyrococcus furiosus[J]. Biotechnology and Bioengineering, 2001, 73(3): 203-210.
    [13] PLACIER G, WATZLAWICK H, RABILLER C, MATTES R. Evolved beta-galactosidases from Geobacillus stearothermophilus with improved transgalactosylation yield for galacto-oligosaccharide production[J]. Applied and Environmental Microbiology, 2009, 75(19): 6312-6321.
    [14] WU Y, YUAN S, CHEN S, WU D, CHEN J, WU J. Enhancing the production of galacto-oligosaccharides by mutagenesis of Sulfolobus solfataricus beta-galactosidase[J]. Food Chemistry, 2012, 138(2-3): 1588-1595.
    [15] GAO X, WU J, WU D. Rational design of the beta-galactosidase from Aspergillus oryzae to improve galactooligosaccharide production[J]. Food Chemistry, 2019, 286: 362-367.
    [16] URRUTIA P, BERNAL C, WILSON L, ILLANES A. Use of chitosan heterofunctionality for enzyme immobilization: beta-galactosidase immobilization for galacto-oligosaccharide synthesis[J]. International Journal of Biological Macromolecules, 2018, 116: 182-193.
    [17] USVALAMPI A, MAAHEIMO H, TOSSAVAINEN O, FREY AD. Enzymatic synthesis of fucose-containing galacto-oligosaccharides using β-galactosidase and identification of novel disaccharide structures[J]. Glycoconjugate Journal, 2018, 35(1): 31-40.
    [18] YU L, O’SULLIVAN DJ. Immobilization of whole cells of Lactococcus lactis containing high levels of a hyperthermostable β-galactosidase enzyme in chitosan beads for efficient galacto-oligosaccharide production[J]. Journal of Dairy Science, 2018, 101(4): 2974-2983.
    [19] DONG YN, WANG L, GU Q, CHEN HQ, LIU XM, SONG YD, CHEN W, HAGLER AT, ZHANG H, XU J. Optimizing lactose hydrolysis by computer-guided modification of the catalytic site of a wild-type enzyme[J]. Molecular Diversity, 2013, 17(2): 371-382.
    [20] DONG YN, LIU XM, CHEN HQ, XIA Y, ZHANG HP, ZHANG H, CHEN W. Enhancement of the hydrolysis activity of beta-galactosidase from Geobacillus stearothermophilus by saturation mutagenesis[J]. Journal of Dairy Science, 2011, 94(3): 1176-1184.
    [21] COCKBURN DW, VANDENENDE C, CLARKE AJ. Modulating the pH-activity profile of cellulase by substitution: replacing the general base catalyst aspartate with cysteinesulfinate in cellulase A from Cellulomonas fimi[J]. Biochemistry, 2010, 49(9): 2042-2050.
    [22] ENGELEN AJ, RANDSDORP PH. Determination of neutral lactase activity in industrial enzyme preparations by a colorimetric enzymatic method: collaborative study[J]. Journal of AOAC International, 1999, 82(1): 112-118.
    [23] OLSON BJSC. Assays for determination of protein concentration[J]. Current Protocols in Pharmacology, 2016, 73: A.3A.1-A.3A.32.
    [24] WANG X, CHEN S, FAN L, LIU H, CHEN S, YE X, LI Z, CUI Z, HUANG Y. Characterization of a halotolerant GH2 family β-galactosidase GalM from Microvirga sp. strain MC18[J]. Protein Expression and Purification. 2022, 194: 106074.
    [25] SUN J, YAO C, LI Y, WANG W, HAO J, YU Y. A novel salt-tolerant GH42β-galactosidase with transglycosylation activity from deep-sea metagenome[J]. World Journal of Microbiology & Biotechnology, 2022, 38(9): 154.
    [26] KITTIBUNCHAKUL S, PHAM ML, TRAN AM, NGUYEN TH. beta-Galactosidase from Lactobacillus helveticus DSM 20075: biochemical characterization and recombinant expression for applications in dairy industry[J]. International Journal of Molecular Sciences, 2019, 20(4): 947.
    [27] GODOY AS, CAMILO CM, KADOWAKI MA, DOS S MUNIZ H, SANTO ME, MURAKAMI MT, NASCIMENTO AS, POLIKARPOV I. Crystal structure of beta1→6-galactosidase from Bifidobacterium bifidum S17: trimeric architecture, molecular determinants of the enzymatic activity and its inhibition by alpha -galactose[J]. The FEBS Journal, 2016, 283(22): 4097-4112.
    [28] van LEEUWEN SS, KUIPERS BJH, DIJKHUIZEN L, KAMERLING JP. Comparative structural characterization of 7 commercial galacto-oligosaccharide (GOS) products[J]. Carbohydrate Research, 2016, 425: 48-58.
    [29] QIN ZM, LI SF, HUANG X, KONG W, YANG XP, ZHANG SF, CAO LC, LIU YH. Improving galactooligosaccharide synthesis efficiency of beta-galactosidase Bgal1-3 by reshaping the active site with an intelligent hydrophobic amino acid scanning[J]. Journal of Agricultural and Food Chemistry, 2019, 67(40): 11158-11166.
    [30] KUMAR R, HENRISSAT B, COUTINHO PM. Intrinsic dynamic behavior of enzyme: substrate complexes govern the catalytic action of beta -galactosidases across clan GH-A[J]. Scientific Reports, 2019, 9(1): 10346.
    [31] 董艺凝, 陈海琴, 张灏, 陈卫. 嗜热脂肪芽孢杆菌耐热β-半乳糖苷酶功能位点的累积进化研究[J]. 食品工业科技, 2015, 36(7): 148-153. DONG YN, CHEN HQ, ZHANG H, CHEN W. Coevolutionary study on the functionary amino acid residues of Geobacillus stearothermophilus thermostable β-galactosidase BgaB[J]. Science and Technology of Food Industry, 2015, 36(7): 148-153(in Chinese).
    [32] 董艺凝. 耐热β-半乳糖苷酶BgaB分子改造以及突变体性质研究[D]. 无锡: 江南大学博士学位论文, 2011. DONG YN. Molecular modification and characterization of thermostable β-galactosidase BgaB mutants[D]. Wuxi: Doctoral Dissertation of Jiangnan University, 2011(in Chinese).
    [33] 董艺凝, 陈卫, 陈海琴, 赵建新, 陈永泉, 张灏. 嗜热脂肪芽孢杆菌(Geobacillus stearothermophilus)来源耐热β-半乳糖苷酶BgaB转糖苷催化活性改造[J]. 食品与发酵工业, 2020, 46(2): 1-6. DONG YN, CHEN W, CHEN HQ, ZHAO JX, CHEN YQ, ZHANG H. Enhances transglycosylation activity of thermostable β-galactosidase BgaB from Geobacillus stearothermophilus[J]. Food and Fermentation Industries, 2020, 46(2): 1-6(in Chinese).
    [34] STRAZZULLI A, COBUCCI-PONZANO B, CARILLO S, BEDINI E, CORSARO MM, POCSFALVI G, WITHERS SG, ROSSI M, MORACCI M. Introducing transgalactosylation activity into a family 42 beta -galactosidase[J]. Glycobiology, 2017, 27(5): 425-437.
    [35] YIN HF, PIJNING T, MENG XF, DIJKHUIZEN L, van LEEUWEN SS. Biochemical characterization of the functional roles of residues in the active site of the β-galactosidase from Bacillus circulans ATCC 31382[J]. Biochemistry, 2017, 56(24): 3109-3118.
    [36] SHAIKH FA, MÜLLEGGER J, HE SM, WITHERS SG. Identification of the catalytic nucleophile in Family 42 beta-galactosidases by intermediate trapping and peptide mapping: YesZ from Bacillus subtilis[J]. FEBS Letters, 2007, 581(13): 2441-2446.
    [37] MANGIAGALLI M, LAPI M, MAIONE S, ORLANDO M, BROCCA S, PESCE A, BARBIROLI A, CAMILLONI C, PUCCIARELLI S, LOTTI M, NARDINI M. The co-existence of cold activity and thermal stability in an antarctic GH42β-galactosidase relies on its hexameric quaternary arrangement[J]. The FEBS Journal, 2021, 288(2): 546-565.
    [38] LIU P, WU JW, LIU JH, OUYANG J. Engineering of a β-galactosidase from Bacillus coagulans to relieve product inhibition and improve hydrolysis performance[J]. Journal of Dairy Science, 2021, 104(10): 10566-10575.
    [39] Kumar R, Henrissat B, Coutinho PM. Intrinsic dynamic behavior of enzyme: substrate complexes govern the catalytic action of β-galactosidases across clan GH-A. Scientific Reports. 2019, 9(1): 10346.
    [40] Kalathinathan P, Sain A, Pulicherla K, Kodiveri Muthukaliannan G. A Review on the various sources of β-galactosidase and its lactose hydrolysis property. Current Microbiology. 2023, 80(4): 122.
    [41] SHIPKOWSKI S, BRENCHLEY JE. Bioinformatic, genetic, and biochemical evidence that some glycoside hydrolase family 42 beta-galactosidases are Arabinogalactan type I oligomer hydrolases[J]. Applied and Environmental Microbiology, 2006, 72(12): 7730-7738.
    [42] THAKUR M, RAI AK, SINGH SP. An acid-tolerant and cold-active β-galactosidase potentially suitable to process milk and whey samples[J]. Applied Microbiology and Biotechnology, 2022, 106(9/10): 3599-3610.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

董艺凝,陈卫,张灏,顾海洋,刘洋,陈海琴. GH42家族保守氨基酸位点累积突变对Geobacillus stearothermophilus来源β-半乳糖苷酶BgaB催化活性的影响[J]. 微生物学通报, 2023, 50(6): 2532-2544

复制
分享
文章指标
  • 点击次数:232
  • 下载次数: 931
  • HTML阅读次数: 1094
  • 引用次数: 0
历史
  • 收稿日期:2022-08-17
  • 录用日期:2022-11-14
  • 在线发布日期: 2023-06-05
  • 出版日期: 2023-06-25
文章二维码